精英家教网 > 高中数学 > 题目详情
设an(n=2,3,4,…)是(3-
x
)n
的展开式中含x的系数,则
1
a2
+
3
a3
+
9
a4
+…+
32007
a2009
的值等于(  )
分析:由题意可得 an=
C
2
n
•3n-2,可得
1
a2
+
3
a3
+
9
a4
+…+
32007
a2009
=
1
C
2
2
+
1
C
2
3
+
1
C
2
4
+…+
1
C
2
2009
,再根据组合数的计算公式用裂项法进行求和.
解答:解:由题意可得 an=
C
2
n
•3n-2,∴
1
a2
+
3
a3
+
9
a4
+…+
32007
a2009
=
1
C
2
2
+
1
C
2
3
+
1
C
2
4
+…+
1
C
2
2009
 
=2(
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2008×2009
)=2(1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
2008
-
1
2009

=2(1-
1
2009
)=
4016
2009

故选C.
点评:本题主要考查二项式定理的应用,组合数的计算公式,用裂项法进行数列求和,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设an(n=2,3,4,…)是(3-
x
)n
展开式中x的一次项的系数,则
32
a2
+
33
a3
+…+
32009
a2009
的值是(  )
A、
2007×18
2008
B、
2008×18
2009
C、
2008×18
2010
D、
2007×18
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

设an(n=2,3,4…)是(3+
x
n的展开式中x的一次项的系数,则
2008
2007
32
a2
+
33
a3
+…+
32008
a2008
 )的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•嘉兴一模)设an(n=2,3,4,…)是(3-
x
)n
的展开式中x的一次项的系数,则
32
a2
+
33
a3
+…+
318
a18
的值是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设an(n=2,3,4…)是(3+
x
)n
展开式中x的一次项的系数,则
2010
2009
(
32
a2
+
33
a3
+…+
32010
a2010
)
的值是
18
18

查看答案和解析>>

同步练习册答案