精英家教网 > 高中数学 > 题目详情
设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为y=1.
(Ⅰ)确定b,c的值;
(Ⅱ)设曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2).证明:当x1≠x2时,f′(x1)≠f′(x2);
(Ⅲ)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.
【答案】分析:(Ⅰ)由得:f(0)=c,f'(x)=x2-ax+b,f'(0)=b.由此能求出b和c.
(Ⅱ),由于点(t,f(t))处的切线方程为y-f(t)=f'(t)(x-t),而点(0,2)在切线上,所以2-f(t)=f'(t)(-t),由此利用反证法能够证明f'(x1)≠f'(x2).
(Ⅲ)过点(0,2)可作y=f(x)的三条切线,等价于方程2-f(t)=f'(t)(0-t)有三个相异的实根,即等价于方程有三个相异的实根.由此能求出a的取值范围.
解答:解:(Ⅰ)由
得:f(0)=c,f'(x)=x2-ax+b,f'(0)=b.
又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,
得f(0)=1,f'(0)=0.
故b=0,c=1.
(Ⅱ)
由于点(t,f(t))处的切线方程为y-f(t)=f'(t)(x-t),
而点(0,2)在切线上,
所以2-f(t)=f'(t)(-t),
化简得
即t满足的方程为
下面用反证法证明.
假设f'(x1)=f'(x2),
由于曲线y=f(x)在点(x1,f(x1))及(x2,f(x2))处的切线都过点(0,2),
则下列等式成立:
由(3)得x1+x2=a,
由(1)-(2)得

故由(4)得
此时与x1≠x2矛盾,
所以f'(x1)≠f'(x2).
(Ⅲ)故(Ⅱ)知,过点(0,2)可作y=f(x)的三条切线,
等价于方程2-f(t)=f'(t)(0-t)有三个相异的实根,
即等价于方程有三个相异的实根.
,则
由于a>0,故有
t(-∞,0)
g'(t)+-+
g(t)极大值1极小值
由g(t)的单调性知:要使g(t)=0有三个相异的实根,当且仅当

∴a的取值范围是
点评:本题主要考查函数、导数等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、分类与整合思想及有限与无限思想.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
处取得最大值2,其图象与轴的相邻两个交点的距离为
π
2

(I)求f(x)的解析式;
(II)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数ω(其中A>0,ω>0,-π<φ<π )在x=
π
6
处取得最大值2,其图象与轴的相邻两个交点的距离为
π
2

(I)求f(x)的解析式;
(II)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源:2013-2014学年湖南省株洲市醴陵二中高三(上)第一次月考数学试卷(理科)(解析版) 题型:解答题

已知函数f(x)=log2(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设函数,其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省哈尔滨三中高三(上)9月月考数学试卷(文科)(解析版) 题型:解答题

设函数,其中a>0,曲线y=f(x)在点P(0,f(0))处的切线方程为x轴
(1)若x=1为f(x)的极值点,求f(x)的解析式
(2)若过点(0,2)可作曲线y=f(x)的三条不同切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源:2013年广东省高考数学模拟最后一卷(文科)(解析版) 题型:解答题

设函数ω(其中A>0,ω>0,-π<φ<π )在x=处取得最大值2,其图象与轴的相邻两个交点的距离为
(I)求f(x)的解析式;
(II)求函数f(x)的值域.

查看答案和解析>>

同步练习册答案