精英家教网 > 高中数学 > 题目详情
在数列{an}中,a1=1,a2=3,an+2=3an+1-kan(k≠0)对任意n∈N*成立,令bn=an+1-an,且{bn}是等比数列.
(1)求实数k的值;
(2)求数列{an}的通项公式;
(3)求和:Sn=b1+2b2+3b3+…nbn
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件先分别求出a1,a2,a3,a4,进而求出b1,b2,b3,由{bn}成等比数列,由此能求出k.
(2)由已知条件求出bn=2n,根据bn=an+1-an,利用累加法能求出数列{an}的通项公式.
(3)由Sn=b1+2b2+3b3+…nbn=1•2+2•22+3•23+…+n•2n,利用错位相减法能求出Sn
解答: 解:(1)∵a1=1,a2=3,
a3=3×3-k×1=9-k,
a4=3×(9-k)-k×3=27-6k,
∵bn=an+1-an
∴b1=3-1=2,b2=6-k,b3=18-5k,
∵{bn}成等比数列,
b22=b1•b3
∴(6-k)2=2×(18-5k),
解得k=2或k=0(舍)
当k=2时,an+2=3an+1-2an
∴an+2-an+1=2(an+1-an),
bn+1
bn
=2
,∴k=2时满足条件.
(2)∵b1=2,{bn}成等比数列,
bn+1
bn
=2
,∴bn=2n
∴a2-a1=2,a3-a2=22,…,an-an-1=2n-1
∴an-a1=1+2+22+23+…+2n-1
=
1-2n
1-2
=2n-1,
∴an=2n
(3)Sn=b1+2b2+3b3+…nbn
=1•2+2•22+3•23+…+n•2n,①
2Sn=1•22+2•23+3•24+…+n•2n+1,②
①-②,得:-Sn=2+22+23+…+2n-n×2n+1
=
2(1-2n)
1-2
-n×2n+1
=2n+1-2-n×2n+1
Sn=(n-1)×2n+1+2
点评:本题考查数列的通项公式和前n项和的求法,是中档题,解题时要注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某班的5名同学代表班级参加学校组织的知识竞赛,在竞赛过程中,每人依次回答问题,为更好的发挥5人的整体水平,其中A同学只能在第一或最后一个答题,B和C同学则必须相邻顺序答题,则不同的答题顺序编排方法的种数为
 
(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:

实验测得四组(x,y)的值是(1,2),(2,4),(3,4),(4,5),(5,5),若线性回归方程是
y
=0.7x+
a
.则
a
的值是(  )
A、1.9B、1.4
C、2.6D、2.2

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=
1-i
2+i
在复平面上对应的点的坐标为(  )
A、(1,-3)
B、(
1
5
,-
3
5
C、(3,-3)
D、(
3
5
,-
3
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知异面直线a、b的方向向量分别为
a
b
,平面α、β的法向量分别为
m
n
,则下列命题中是假命题的是(  )
A、对于
p
,若存在实数x、y使得
p
=x
a
+y
b
,则
p
a
b
共面
B、若
a
m
,则a⊥α
C、若cos<
a
m
>=-
1
2
,则l与α所成角大小为60°
D、若二面角α-l-β的大小为γ,则γ=<
m
n
>或π-<
m
n

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在直三棱柱ABC-A1B1C1中,BC=
2
,AB=AC=AA1=1,D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA1
(Ⅰ)求证:CD=C1D;
(Ⅱ)求二面角A1-B1D-P的平面角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={(x,y)|y=x2+mx+2},B={(x,y)|y=x+1,x>0},若A∩B≠∅,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
1
2
(ax+a-x)(a>0且a≠1)的图象过点(2,
41
9
).判断f(x)在(0,+∞)上的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分图象如图所示,则y=f(x+
π
6
)取得最小值时x的集合为(  )
A、{x|x=kπ-
π
6
,k∈Z }
B、{x|x=kπ-
π
3
,k∈Z }
C、{x|x=2kπ-
π
6
,k∈Z }
D、{x|x=2kπ-
π
3
,k∈Z }

查看答案和解析>>

同步练习册答案