精英家教网 > 高中数学 > 题目详情
在正方体ABCD-A1B1C1D1中,若E是A1C1的中点,则直线CE与BD的位置关系是   .
垂直
建立空间直角坐标系,利用坐标法解决.
以A为原点,AB,AD,AA1所在直线分别为x,y,z轴建立空间直角坐标系,如图,

设正方体棱长为1,
则C(1,1,0),B(1,0,0),D(0,1,0),E(,,1),
=(-,-,1),=(-1,1,0),
显然·=-+0=0,
,即CE⊥BD.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面为正方形,侧面底面为等腰直角三角形,且分别为底边和侧棱的中点.

(1)求证:∥平面
(2)求证:平面
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥S-ABCD中,SD⊥底面ABCD,底面ABCD是矩形,SD=AD=AB,E是SA的中点.

(1)求证:平面BED⊥平面SAB.
(2)求直线SA与平面BED所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥中,,底面为梯形,,且.

(1)求证:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)如图:四棱锥P—ABCD中,底面ABCD

是矩形,PA⊥底面ABCD,PA=AB=1,AD=,点F是PB的中点,点E在边BC上移动.
(1)证明:无论点E在BC边的何处,都有PE⊥AF;
(2)当BE等于何值时,PA与平面PDE所成角的大小为45°. 

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知A(1,0,0),B(0,1,0),C(0,0,1),则平面ABC的一个单位法向量是(  )
A.(,,-)B.(,-,)C.(-,,)D.(-,-,-)

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知空间三点A(1,1,1),B(-1,0, 4),C(2,-2,3),则的夹角θ的大小是(  )
A.B.πC.D.π

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知a=(2,-1,3),b=(-1,4,-2),c=(7,5,λ),若a,b,c三向量共面,则实数λ=   .

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知l∥α,且l的方向向量为(2,m,1),平面α的法向量为,则m=________.

查看答案和解析>>

同步练习册答案