精英家教网 > 高中数学 > 题目详情

到定点(0,p)(其中p>0)的距离等于到定直线y=-p的距离的轨迹方程为

[  ]

A.y2=2px

B.x2=2py

C.y2=4px

D.x2=4py

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)大家知道,过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心(定点).受此启发,研究下面问题:
1过(1)中的抛物线的顶点O任意作互相垂直的弦OA、OB,问:弦AB是否经过一个定点?若经过,请求出定点坐标,否则说明理由;2研究:对于抛物线上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

根据下列条件,求抛物线的标准方程
(1)顶点在原点,对称轴是y轴,并经过点P(-6,-3).
(2)抛物线y2=2px(p>0)上有一点M,其横坐标为8,它到焦点的距离为9.
(3)抛物线y2=2px(p>0)上的点到定点(1,0)的最近距离为
p2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知动点M到定点F(1,0)的距离比M到定直线x=-2的距离小1.
(1)求证:M点的轨迹是抛物线,并求出其方程;
(2)我们知道:“过圆上任意一点P,任意作互相垂直的弦PA、PB,则弦AB必过圆心”(定点).受此启发,研究下面问题:
对于抛物线y2=2px(p>0)上某一定点P(非顶点),过P任意作互相垂直的弦PA、PB,弦AB是否经过定点?

查看答案和解析>>

科目:高中数学 来源: 题型:

抛物线y2=2px(p>0)的准线方程为x=-2,该抛物线上的点到其准线的距离与到定点N的距离都相等,以N为圆心的圆与直线
l1:y=x和l2:y=-x都相切.
(Ⅰ)求圆N的方程;
(Ⅱ)是否存在直线l同时满足下列两个条件,若存在,求出的方程;若不存在请说明理由.
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆M:
y2
a2
+
x2
b2
=1
(a>b>0)的四个顶点构成边长为5的菱形,原点O到直线AB的距离为
12
5
,其A(0,a),B(-b,0).直线l:x=my+n与椭圆M相交于C,D两点,且以CD为直径的圆过椭圆的右顶点P(其中点C,D与点P不重合).
(1)求椭圆M的方程;
(2)试判断直线l与x轴是否交于定点?若是,求出定点的坐标;若不是,请说明理由.

查看答案和解析>>

同步练习册答案