精英家教网 > 高中数学 > 题目详情

【题目】某企业拥有3条相同的生产线,每条生产线每月至多出现一次故障.各条生产线是否出现故障相互独立,且出现故障的概率为.

1)求该企业每月有且只有1条生产线出现故障的概率;

2)为提高生产效益,该企业决定招聘名维修工人及时对出现故障的生产线进行维修.已知每名维修工人每月只有及时维修1条生产线的能力,且每月固定工资为1万元.此外,统计表明,每月在不出故障的情况下,每条生产线创造12万元的利润;如果出现故障能及时维修,每条生产线创造8万元的利润;如果出现故障不能及时维修,该生产线将不创造利润,以该企业每月实际获利的期望值为决策依据,在之中选其一,应选用哪个?(实际获利=生产线创造利润-维修工人工资)

【答案】1 2)应选用

【解析】

1)分析可得随机变量满足二项分布,求得时的概率即可;

2)由(1,并分别求得,,时的概率,由题意得到不同方案下实际获利并求得期望,比较大小即可

解:(1)设3条生产线中出现故障的条数为,则,

因此

2)①当时,设该企业每月的实际获利为万元,

,则

,则

,则

,则

,,

,

此时,实际获利的均值

②当时,设该企业每月的实际获利为万元,

,则

,则

,则

,则

因为,

于是以该企业每月实际获利的期望值为决策依据,在之中选其一,应选用

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若恒成立,求的取值集合;

(2)在函数的图像上取定点,记直线AB的斜率为K,证明:存在,使恒成立;

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有限个元素组成的集合为,集合中的元素个数记为,定义,集合的个数记为,当,称集合具有性质.

(1)设集合具有性质,判断集合中的三个元素是否能组成等差数列,请说明理由;

(2) 设正数列的前项和为,满足,其中,数列中的前项:组成的集合记作,将集合中的所有元素从小到大排序,即满足,求

(3) 己知集合,其中数列是等比数列,,且公比是有理数,判断集合是否具有性质,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数y=fx)对定义域的每一个值x1,在其定义域均存在唯一的x2,满足fx1fx2)=1,则称该函数为“依赖函数”.

1)判断y=2x是否为“依赖函数”;

2)若函数y=a+sinxa1), 为依赖函数,求a的值,并给出证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为了解学生对学校食堂服务的满意度,随机调查了50名男生和50名女生,每位学生对食堂的服务给出满意或不满意的评价,得到如图所示的列联表.经计算的观测值,则可以推断出(

满意

不满意

30

20

40

10

0.100

0.050

0.010

2.706

3.841

6.635

A.该学校男生对食堂服务满意的概率的估计值为

B.调研结果显示,该学校男生比女生对食堂服务更满意

C.有95%的把握认为男、女生对该食堂服务的评价有差异

D.有99%的把握认为男、女生对该食堂服务的评价有差异

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某班从4位男生和3位女生志愿者选出4人参加校运会的点名签到工作,则选出的志愿者中既有男生又有女生的概率的是__________.(结果用最简分数表示)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率e满足,右顶点为A,上顶点为B,点C(0,-2),过点C作一条与y轴不重合的直线l,直线l交椭圆EPQ两点,直线BPBQ分别交x轴于点MN;当直线l经过点A时,l的斜率为

(1)求椭圆E的方程;

(2)证明:为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法正确的是(  )

A.,则的逆命题是真命题

B.,则的逆否命题为假命题

C.的否定是

D.为假命题,则均为假命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,底面为菱形,平面.

(1)若点分别在上,且,证明平面.

(2)若平面平面,求平面把多面体分成大、小两部分的体积比.

查看答案和解析>>

同步练习册答案