精英家教网 > 高中数学 > 题目详情
7.求适合下列条件的椭圆的标准方程.
(1)长轴长是短轴长的2倍,且过点(2,-6);
(2)在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6.

分析 (1)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,或$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$,a>b>0,由已知得a=2b,且椭圆过点(2,-6),由此能求出椭圆的标准的方程.
(2)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,a>b>0,由已知条件推导出c=b=3,由此能求出椭圆的标准方程.

解答 解:(1)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,或$\frac{{y}^{2}}{{a}^{2}}+\frac{{x}^{2}}{{b}^{2}}=1$,a>b>0,
∵长轴长是短轴长的2倍,∴a=2b,①
∵椭圆过点(2,-6),∴$\frac{4}{{a}^{2}}+\frac{36}{{b}^{2}}$=1,或$\frac{36}{{a}^{2}}+\frac{4}{{b}^{2}}$=1,②
由①②,得a2=148,b2=37或a2=52,b2=13,故所求的方程为$\frac{{x}^{2}}{148}+\frac{{y}^{2}}{37}=1$或$\frac{{y}^{2}}{52}+\frac{{x}^{2}}{13}=1$.
(2)设椭圆的标准方程为$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1,a>b>0,
∵在x轴上的一个焦点与短轴两端点的连线互相垂直,且焦距为6,如图所示,
∴△A1FA2为一等腰直角三角形,OF为斜边A1A2的中线(高),且OF=cA1A2=2b
c=b=3.∴a2=b2+c2=18.
故所求椭圆的方程为$\frac{{x}^{2}}{18}+\frac{{y}^{2}}{9}=1$.

点评 本题考查椭圆的标准方程的求法,是中档题,解题时要认真审题,注意椭圆性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.用导数求单调区间
f(x)=$\frac{{x}^{2}+3x+1}{{x}^{2}+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=-4x2+4ax-4a-a2,(a≠0).
(1)若a=-1,求函数f(x)的单调递增区间;
(2)若函数f(x)在区间[0,1]上的最大值为0,存在x∈[2,3],使得m(x2+2x)<f(x)成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.若函数f(x)=$\frac{{x}^{3}}{(2x+1)(x+a)}$为奇函数,则a=-$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数y=1g(3x-x2)的单调增区间为(0,$\frac{3}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知P(x0,y0)是圆x2+y2=a2内异于圆心的点,则直线x0x+y0y=a2与圆交点的个数为0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.函数y=2sin(kx+$\frac{π}{3}$)的周期为T,T∈(1,3),则正整数k=3,4,5,6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某厂生产当地一种特产,并以适当的批发价卖给销售商甲,甲再以自己确定的零售价出售,已知该特产的销售(万件)与甲所确定的零售价成一次函数关系’当零售价为80元/件时,销售为7万件;当零售价为50元/件时,销售为10万件,后来,厂家充分听取了甲的意见,决定对批发价改革,将每件产品的批发价分成固定批发价和弹性批发价两部分,其中固定批发价为30元/件,弹性批发价与该特产的销售量成反比,当销售为10万件,弹性批发价为1元/件,假设不计其它成本,据此回答下列问题
(1)当甲将每件产品的零售价确定为100元/件时,他获得的总利润为多少万元?
(2)当甲将每件产品的零售价确定为多少时,每件产品的利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=x3+log2(x+$\sqrt{{x}^{2}+1}$),则对任意实数a和b,“a+b≥0”是“f(a)+f(b)≥0”的充要条件.

查看答案和解析>>

同步练习册答案