【题目】已知圆C经过点,,且圆心在直线上
(1)求圆C的方程.
(2)过点的直线与圆C交于A,B两点,问:在直线上是否存在定点N,使得(,分别为直线AN,BN的斜率)恒成立?若存在,请求出点N的坐标;若不存在,请说明理由.
【答案】(1);(2)存在定点,使得恒成立
【解析】
(1)的垂直平分线与直线的交点就是圆心,求出圆心即可得到半径,圆的方程得解;
(2)设直线AB的方程为,联立直线与圆的方程,消去y整理得,根据建立等式,结合韦达定理求出定点,检验直线斜率为0和斜率不存在的情况.
(1)由题可知线段EF的中点为,EF的垂直平分线的斜率为5,
的垂直平分线的方程为.
EF的垂直平分线与直线l的交点即为圆心C,
由,解得,即.
又,
圆C的方程为.
(2)当直线AB的斜率存在且不为0时,设直线AB的斜率为k,则过点的直线AB的方程为,由,消去y整理得.
设,,
,.(*)
设,则,.
,
,,
即,
将(*)式代入得,
解得故点N的坐标为.
当直线AB的斜率为0时,显然点可使成立.
当直线AB的斜率不存在时,直线AB的方程为,,,显然点N可使成立.
在直线上存在定点使得恒成立.
科目:高中数学 来源: 题型:
【题目】函数的图象的对称轴之间的最短距离为,且经过点.
(1)写出函数的解析式;
(2)若对任意的,恒成立,求实数的取值范围;
(3)求实数和正整数,使得在上恰有2017个零点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若α是第一象限角,则sinα+cosα的值与1的大小关系是( )
A. sinα+cosα>1B. sinα+cosα=1C. sinα+cosα<1D. 不能确定
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.
(1)若直线与椭圆交于两点,求的值;
(2)求椭圆的内接矩形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD中,PA⊥底面ABCD,BC=CD=2,AC=4,∠ACB=∠ACD=,F为PC的中点,AF⊥PB.
(1)求PA的长;
(2)求二面角B﹣AF﹣D的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(2017·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.
求证:(1)EF∥平面ABC;
(2)AD⊥AC.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在的方格表中,每个格被染上红、蓝、黄、绿四种颜色之一,若每个的子方格表包含每种颜色的格均为一,称此染法为“均衡”的.则所有不同的均衡的染法有__________种.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数在区间上的图像如图所示,将该函数图像上各点的横坐标缩短到原来的一半(纵坐标不变),再向右平移个单位长度后,所得到的图像关于直线对称,则的最小值为( )
A. B. C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com