精英家教网 > 高中数学 > 题目详情
1.已知方程sinθ•x2+cosθ•x-1=0有两个实数根m,n,那么过点M(m,m2)和N(n,n2)(m≠±n)的直线与圆O:x2+y2=1的位置关系是(  )
A.相交B.相切C.相离D.随θ的变化而变化

分析 由m,n为已知方程的两个不相等的实数根,得到根的判别式大于0表示出m+n与mn,表示出直线MN解析式,利用点到直线的距离公式表示出圆心到直线的距离d,比较d与r的大小即可做出判断.

解答 解:∵方程sinθ•x2+cosθ•x-1=0有两个实数根m,n,
∴m+n=-cotθ,mn=-$\frac{1}{sinθ}$,△=cos2θ+4sinθ≥0
由圆的方程得到圆心(0,0),半径r=1,
过两点M(m,m2)和N(n,n2)(m≠±n)的直线方程为y-m2=(m+n)(x-m),
整理得:(m+n)x-y-mn=0,即-$\frac{cosθ}{sinθ}$x-y-$\frac{1}{sinθ}$=0,
∵圆心(0,0)到直线的距离d=$\frac{|-\frac{1}{sinθ}|}{\sqrt{\frac{co{s}^{2}θ}{si{n}^{2}θ}+1}}$=1,
∴直线与圆的位置关系是相切.
故选:B.

点评 此题考查了直线与圆的位置关系,涉及的知识有:韦达定理,点到直线的距离公式,以及直线的两点式方程,弄清题意是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=x2-ax+2a-3
(1)若函数g(x)=f(6x)在(-∞,1)有两个不相等的零点,求a的取值范围;
(2)若a=2,且存在实数t,当x∈[1,m](m>1)时,f(x+t)≤4x恒成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.49${\;}^{lo{g}_{\frac{1}{7}}3}$=$\frac{1}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.动圆M与定圆C1:x2+y2+6x=0外切,且内切于定圆C2:x2+y2-6x=40,求动圆圆心M的轨迹方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设函数f(x)=$\frac{{2}^{x}-1}{{2}^{x}+1}$,若关于x的方程[f(x)]3-a|f(x)|+2=0有两个不等实根,则实数a的取值范围是(  )
A.(0,1)B.(1,3)C.(-1,3)D.(3,∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a>0且a≠1,f(logax)=$\frac{a}{{a}^{2}-1}$•(x-x-1).
(1)求函数f(x)的表达式;
(2)判断f(x)的奇偶性和单调性;(不必证明)
(3)当f(x)定义域为(-1,1)时,解关于m的不等式:f(1-m)+f(1-m2)<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.若椭圆$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1$(a>b>0)上存在一点M,使得∠F1MF2=90°(F1,F2为椭圆的两个焦点),求椭圆的离心率e的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,正方体ABCD-A1B1C1D1中,E,F分别是B1C1,C1D1的中点.
(1)异面直线EF与A1D所成的角的大小;
(2)求证EF∥平面A1BD;
(3)求证EF⊥平面AA1C1C;
(4)求证:平面A1BD⊥平面AA1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简:$\sqrt{\frac{2-2sinα}{1+cosα}}$-tan$\frac{α}{2}$,其中$\frac{π}{2}$<α<π.

查看答案和解析>>

同步练习册答案