精英家教网 > 高中数学 > 题目详情
10.下列命题正确的是(  )
A.到x轴距离为5的点的轨迹是y=5
B.方程$\frac{x}{y}=1$表示的曲线是直角坐标平面上第一象限的角平分线
C.方程(x-y)2+(xy-1)2=0表示的曲线是一条直线和一条双曲线
D.2x2-3y2-2x+m=0通过原点的充要条件是m=0

分析 对4个选项分别进行判断,即可得出结论.

解答 解:A.∵到x轴距离为5的所有点的纵坐标都是5或者-5,横坐标为任意值,∴到x轴距离为5的所有点组成的图形是两条与x轴平行的直线,故不正确;
B.方程$\frac{x}{y}=1$表示的曲线是直角坐标平面上第一、三象限的角平分线,除去原点,故不正确;
C.方程(x-y)2+(xy-1)2=0,即x-y=0且xy-1=0,即点(1,1)与(-1,-1),不正确;
D.2x2-3y2-2x+m=0通过原点,则m=0;m=0时,2x2-3y2-2x=0通过原点,故正确.
故选:D.

点评 本题考查命题的真假判断,考查学生分析解决问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知方程x2+y2-2x-4y+m=0,若此方程表示圆,则m的范围是m<5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.化简3log32+log30.125的结果是0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设各项均为正数的数列{an}的前n项之积为Tn,若${T_n}={2^{{n^2}+n}}$,则$\frac{{{a_n}+12}}{2^n}$的最小值为(  )
A.7B.8C.$4\sqrt{3}$D.$2\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.求满足下列条件的直线方程.
(1)直线l1经过点A(4,-2),B(-1,8);
(2)直线l2过点C(-2,1),且与y轴平行.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.如果a>b>0,c>d>0,则下列不等式中不正确的是(  )
A.a-d>b-cB.$\frac{a}{d}$>$\frac{b}{c}$C.a+d>b+cD.ac>bd

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.给出下列四个命题:
①f(x)=x3-3x2是增函数,无极值.
②f(x)=x3-3x2在(-∞,2)上没有最大值
③若命题p:a=0是复数z=a+bi(a,b∈R)为纯虚数的充分条件,命题q:f′(x0)=0是“点x0是可导函数f(x)的极值点”的必要条件,则¬p∧q为真.
④设z1,z2是复数,z12+z22=0?z1=z2=0
其中正确命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知双曲线$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{2}$=1的焦点到渐近线的距离为a,则函数y=logax在区间[1,2]上的值域为(  )
A.[0,1]B.[0,2]C.[1,2]D.[1,4]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知函数f(x)=$\left\{\begin{array}{l}{2,x≤0}\\{\frac{4}{x},x>0}\end{array}\right.$,若函数g(x)=f(x)+x-m不存在零点,则实数m的取值范围是(2,4).

查看答案和解析>>

同步练习册答案