精英家教网 > 高中数学 > 题目详情

【题目】已知在△ABC中,角A,B,C的对边分别为a,b,c,且 + =
(1)求b的值;
(2)若cosB+ sinB=2,求a+c的取值范围.

【答案】
(1)解:△ABC中, + =

+ =

=

解得b=


(2)解:∵cosB+ sinB=2,

∴cosB=2﹣ sinB,

∴sin2B+cos2B=sin2B+ =4sin2B﹣4 sinB+4=1,

∴4sin2B﹣4 sinB+3=0,

解得sinB=

从而求得cosB=

∴B=

由正弦定理得 = = = =1,

∴a=sinA,c=sinC;

由A+B+C=π得A+C=

∴C= ﹣A,且0<A<

∴a+c=sinA+sinC

=sinA+sin( ﹣A)

=sinA+sin cosA﹣cos sinA

= sinA+ cosA

= sin(A+ ),

∵0<A< ,∴ <A+

<sin(A+ )≤1,

sin(A+ )≤

∴a+c的取值范围是( ].


【解析】(1)应用正弦、余弦定理化简 + = ,即可求出b的值;(2)根据cosB+ sinB=2与平方关系sin2B+cos2B=1,求得sinB、cosB,从而求得B的值,再由正弦定理求得a=sinA,c=sinC;利用A+B+C=π求得C= ﹣A,且0<A<

再利用三角恒等变换求a+c=sinA+sinC的取值范围.

【考点精析】本题主要考查了正弦定理的定义的相关知识点,需要掌握正弦定理:才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数 的定义域是(
A.[﹣2,2]
B.(﹣∞,﹣2]∪[2,+∞)
C.(﹣2,2)
D.(﹣∞,﹣2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是函数 图象的一部分.为了得到这个函数的图象,只要将y=sinx(x∈R)的图象上所有的点( )

A.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 ,纵坐标不变
B.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变
C.向左平移 个单位长度,再把所得各点的横坐标缩短到原来的 ,纵坐标不变
D.向左平移 个单位长度,再把所得各点的横坐标伸长到原来的2倍,纵坐标不变

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在区间[0,1]内随机取两个数分别为a,b,则使得方程x2+2ax+b2=0有实根的概率为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将圆 为参数)上的每一点的横坐标保持不变,纵坐标变为原来的 倍,得到曲线C.
(1)求出C的普通方程;
(2)设直线l:x+2y﹣2=0与C的交点为P1 , P2 , 以坐标原点为极点,x轴正半轴为极轴建立极坐标系, 求过线段P1P2的中点且与l垂直的直线的极坐标方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=Asin(ωx+φ)(ω>0, )的部分图象如图所示,将函数f(x)的图象向右平移 个单位后得到函数g(x)的图象,若函数g(x)在区间 )上的值域为[﹣1,2],则θ=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设f(x)是定义在R上周期为2的奇函数,当0≤x≤1时,f(x)=x2﹣x,则 =(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】北宋数学家沈括的主要数学成就之一为隙积术,所谓隙积,即“积之有隙”者,如累棋、层坛之类,这种长方台形状的物体垛积.设隙积共n层,上底由长为a个物体,宽为b个物体组成,以下各层的长、宽依次各增加一个物体,最下层成为长为c个物体,宽为d个物体组成,沈括给出求隙积中物体总数的公式为S= .已知由若干个相同小球粘黏组成的几何体垛积的三视图如图所示,则该垛积中所有小球的个数为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,已知点P(2,0),曲线C的参数方程为 (t为参数).以坐标原点为极点,x轴正半轴为极轴建立极坐标系. (Ⅰ)求曲线C的普通方程和极坐标方程;
(Ⅱ)过点P且倾斜角为 的直线l交曲线C于A,B两点,求|AB|.

查看答案和解析>>

同步练习册答案