分析 由已知条件和正切公式可得所求角的正切值,缩小角的范围可得.
解答 解:由于tanα=tan[(α-β)+β]=$\frac{tan(α-β)+tanβ}{1-tan(α-β)•tanβ}$=$\frac{\frac{1}{2}-\frac{1}{7}}{1+\frac{1}{2}×\frac{1}{7}}$=$\frac{1}{3}$,且α∈(0,π),
所以α∈(0,$\frac{π}{4}$)
又由tanβ=-$\frac{1}{7}$,且β∈(0,π),
得β∈(-$\frac{π}{2}$,π),所以2α-β∈(-π,0).
而tan(2α-β)=tan[(α-β)+α]=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}×\frac{1}{3}}$=1,
所以2α-β=-$\frac{3}{4}$π
点评 本题考查两角和与差的正切公式,缩小角的范围是解决问题的关键,属中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 圆上 | B. | 椭圆上 | C. | 双曲线上 | D. | 抛物线上 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | SD⊥平面EFG | B. | SE⊥GF | C. | EF⊥平面SEG | D. | SE⊥SF |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com