精英家教网 > 高中数学 > 题目详情
已知f(x)=|x-1|-|2x+3|.
(1)f(x)≤a恒成立,求实数a的取值范围;
(2)对于任意非零实数m,不等式|2m-1|+|1-m|≥|m|f(x)恒成立,求实数x的取值范围.
分析:(1)利用分区间讨论法去掉绝对值符号,研究函数在每个区间上的单调性,从而确定函数的最大值,即可确定实数a的取值范围
(2)先分离出f(x),再求出
|2m-1|+|1-m|
|m|
的最小值1,然后解不等式≤1即可.
解答:解:(1)当x<-
3
2
时,f(x)=1-x+2x+3=4+x,f(x)≤f(-
3
2
)=
5
2

-
3
2
≤x≤1时,f(x)=1-x-(2x+3)=-3x-2,f(1)=-5≤f(x)≤f(-
3
2
)=
5
2

当x>1时,f(x)=-(1-x)-(2x+3)=-x-4,f(x)<f(1)=-5
函数f(x)的最大值为
5
2
,要使不等式恒成立,只需a≥
5
2
,即实数a的取值范围为[
5
2
,+∞)
不等式恒成立,即|x-1|-|2x+3|≤
|2m-1|+|1-m|
|m|
恒成立.
因为
|2m-1|+|1-m|
|m|
|2m-1+1-m|
|m|
=1,
所以只需|x-1|-|2x+3|≤1
①当x<-
3
2
时,原不等式可以化为1-x+2x+3≤1,解得x≤-3
②当-
3
2
≤x≤1时,原不等式可以化为1-x-(2x+3)≤1,解得-1≤x≤1,
③当x>1时,原不等式可以化为-x-4≤1,解得x>1
综上所述,x的取值范围是(-∞,-3]∪[-1,+∞)
点评:本题考查绝对值不等式的解法,不等式恒成立问题,考查转化计算、分类讨论的思想方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f (x)、g(x)都是定义在R上的函数,如果存在实数m、n使得h (x)=m f(x)+ng(x),那么称h (x)为f (x)、g(x)在R上生成的函数.设f (x)=x2+x、g(x)=x+2,若h (x)为f (x)、g(x)在R上生成的一个偶函数,且h(1)=3,则函数h (x)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若k=
1
3
,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间[
1
2
,a]
上的值域为[
1
a
,1]
,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=
x
+
1
x
+
x+
1
x
+1
g(x)=
x
+
1
x
-
x+
1
x
+1

(1)分别求f(x)、g(x)的定义域,并求f(x)•g(x)的值;(2)求f(x)的最小值并说明理由;
(3)若a=
x2+x+1
 , b=t
x
 , c=x+1
,是否存在满足下列条件的正数t,使得对于任意的正
数x,a、b、c都可以成为某个三角形三边的长?若存在,则求出t的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若数学公式,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间数学公式上的值域为数学公式,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:2011年高三数学第一轮基础知识训练(20)(解析版) 题型:解答题

已知f(x)是定义在R上的奇函数,当x≥0时,f(x)=x2-kx3.(k≥0)
(Ⅰ)求g(x)的解析式;
(Ⅱ)讨论函数f(x)在区间(-∞,0)上的单调性;
(Ⅲ)若,设g(x)是函数f(x)在区间[0,+∞)上的导函数,问是否存在实数a,满足a>1并且使g(x)在区间上的值域为,若存在,求出a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案