精英家教网 > 高中数学 > 题目详情

如图,半径是数学公式的ΘO中,AB是直径,MN是过点A的圆O的切线,AC,BD相交于点P,且∠DAN=30°,CP×PA=12,又PD>PB,则线段PD的长为________.

4
分析:根据AB是直径得∠ADB=90°,由弦切角定理,得到∠B=∠DAN=30°,从而在Rt△ABD中算出BD=AB=7,设PD=x,根据相交弦定理建立关于x的方程,解之即可得到线段PD的长.
解答:∵MN切圆O于A,∴∠B=∠DAN=30°,
∵AB是直径,可得∠ADB=90°,
∴AD=AB=,且BD=AD=7
又∵圆O中,PB×PD=CP×PA=12
∴设PD=x,可得x(7-x)=12,解之得x=3或4
∵PD>PB,∴PD=4(-3舍去)
故答案为:4
点评:本题给出圆的直径和垂直于该直径的切线,在弦AC、BD相交的情况下求分出的线段PD之长,着重考查了弦切角定理、直径所对的圆周角和解直角三角形等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

(几何证明选讲)如图,半径是数学公式的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为________.

查看答案和解析>>

科目:高中数学 来源:2013年广东省汕头市高考数学一模试卷(理科)(解析版) 题型:填空题

如图,半径是的ΘO中,AB是直径,MN是过点A的圆O的切线,AC,BD相交于点P,且∠DAN=30°,CP×PA=12,又PD>PB,则线段PD的长为   

查看答案和解析>>

科目:高中数学 来源:2011年广东省佛山市顺德区高考热身数学试卷(理科)(解析版) 题型:解答题

(几何证明选讲)如图,半径是的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为   

查看答案和解析>>

科目:高中数学 来源:2011年广东省佛山市顺德区高考热身数学试卷(文科)(解析版) 题型:解答题

(几何证明选讲)如图,半径是的⊙O中,AB是直径,MN是过点A的⊙O的切线,AC,BD相交于点P,且∠DAN=30°,CP=2,PA=9,又PD>PB,则线段PD的长为   

查看答案和解析>>

同步练习册答案