已知函数,.
证明:(1)存在唯一,使;
(2)存在唯一,使,且对(1)中的.
(1)详见解析;(2)详见解析
解析试题分析:(1)依题意,只需证明函数在区间上存在唯一零点.往往转化为利用导数判断函数单调性、极值点,从而判断函数大致图象,进而说明零点分布情况.本题当时,,故在上为增函数,再说明端点函数值异号;(2)与(1)类似,只需证明函数在区间上存在唯一零点.但是不易利用导数判断函数大致图象,考虑到结论中,故需考虑第二问与第一问的关系,利用(1)的结论,设,则,,根据第一问中的符号,从而可判断函数的单调性,进而判断函数大致图象,确定函数的零点,寻求函数的零点与零点的关系,从而证明不等式.
证明:(1)当时,,所以在上为增函数.又..所以存在唯一,使.
(2)当时,化简得.令.记
..则.由(1)得,当时,;当时,.从而在上为增函数,由知,当时,,所以在上无零点.在上为减函数,由及知存在唯一,使得.于是存在唯一,使得.设.
.因此存在唯一的,使得.由于,,所以.
考点:1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.
科目:高中数学 来源: 题型:解答题
修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分14分)
已知函数(为常数)的图象与轴交于点,曲线在点处
的切线斜率为-1.
(I)求的值及函数的极值;
(II)证明:当时,;
(III)证明:对任意给定的正数,总存在,使得当,恒有.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com