精英家教网 > 高中数学 > 题目详情

已知函数.
证明:(1)存在唯一,使
(2)存在唯一,使,且对(1)中的.

(1)详见解析;(2)详见解析

解析试题分析:(1)依题意,只需证明函数在区间上存在唯一零点.往往转化为利用导数判断函数单调性、极值点,从而判断函数大致图象,进而说明零点分布情况.本题当时,,故上为增函数,再说明端点函数值异号;(2)与(1)类似,只需证明函数在区间上存在唯一零点.但是不易利用导数判断函数大致图象,考虑到结论中,故需考虑第二问与第一问的关系,利用(1)的结论,设,则,根据第一问中的符号,从而可判断函数的单调性,进而判断函数大致图象,确定函数的零点,寻求函数的零点与零点的关系,从而证明不等式.
证明:(1)当时,,所以上为增函数.又.所以存在唯一,使
(2)当时,化简得.令.记
.则.由(1)得,当时,;当时,.从而在为增函数,由知,当时,,所以上无零点.在为减函数,由知存在唯一,使得.于是存在唯一,使得.设
.因此存在唯一的,使得.由于,所以
考点:1、函数的零点;2、利用导数判断函数单调性;3、利用导数求函数的最值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题


(1)求的单调区间;(2)求函数上的最值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

修建一个面积为平方米的矩形场地的围墙,要求在前面墙的正中间留一个宽度为2米的出入口,后面墙长度不超过20米,已知后面墙的造价为每米45元,其它墙的造价为每米180元,设后面墙长度为x米,修建此矩形场地围墙的总费用为元.
(1)求的表达式;
(2)试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数时取得极小值.
(1)求实数的值;
(2)是否存在区间,使得在该区间上的值域为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分13分)
设函数
,求曲线处的切线方程;
讨论函数的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数为常数)的图象与轴交于点,曲线在点
的切线斜率为-1.
(I)求的值及函数的极值;
(II)证明:当时,
(III)证明:对任意给定的正数,总存在,使得当,恒有.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数=.
(1)讨论的单调性;
(2)设,当时,,求的最大值;
(3)已知,估计ln2的近似值(精确到0.001)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

函数.
(1)讨论的单调性;
(2)设,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

一物体沿直线以速度的单位为:秒,的单位为:米/秒)的速度作变速直线运动,求该物体从时刻t=0秒至时刻 t=5秒间运动的路程?

查看答案和解析>>

同步练习册答案