精英家教网 > 高中数学 > 题目详情

【题目】如果是抛物线上的点,它们的横坐标依次为是抛物线的焦点,若,则_______________

【答案】

【解析】

分析: 根据抛物线的定义得抛物线上的点到焦点的距离等于该点到准线的距离,因此求出抛物线的准线方程,结合题中数据加以计算,即可得到本题答案.

详解: ∵抛物线y2=4x的焦点为F(1,0),准线为x=﹣1,

根据抛物线的定义,Pi(i=1,2,3,…,8)到焦点的距离等于Pi到准线的距离,即|PiF|=xi+1,

可得|P1F|+|P2F|+…|P8F|=(x1+1)+(x2+1)+…+(x8+1)=()+8,

10+8=18.

故答案为:18

点睛: 1.凡涉及抛物线上的点到焦点距离时,一般运用定义转化为到准线距离处理.本题中充分运用抛物线定义实施转化,其关键在于求点的坐标.

2.若为抛物线上一点,由定义易得;若过焦点的弦的端点坐标为,则弦长为可由根与系数的关系整体求出;若遇到其他标准方程,则焦半径或焦点弦长公式可由数形结合的方法类似地得到.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数有两个极值点,且

)求的取值范围,并讨论的单调性.

)证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 如图所示的几何体中, 平面,且平面,正方形的边长为2为棱中点,平面分别与棱交于点.

(Ⅰ)求证:

)求证:平面平面

)求的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(α)=.

(1)化简f(α);

(2)若f(α)=,且<α<,求cosα-sinα的值;

(3)若α=-,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设二次函数的图像过点,且满足恒成立.

1)求的解析式;

2)若对任意的,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数是定义在上的偶函数,且,若函数6 个零点,则实数的取值范围是( )

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,命题:对,不等式恒成立;命题,使得成立.

(1)若为真命题,求的取值范围;

(2)当时,若假,为真,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】RtABC中,∠B90°BC6AB8,点MABC内切圆的圆心,过点M作动直线l与线段ABAC都相交,将ABC沿动直线l翻折,使翻折后的点A在平面BCM上的射影P落在直线BC上,点A在直线l上的射影为Q,则的最小值为_____

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着西部大开发的深入,西南地区的大学越来越受到广大考生的青睐.下表是西南地区某大学近五年的录取平均分与省一本线对比表:

年份

年份代码

省一本线

录取平均分

录取平均分与省一本线分差

(1)根据上表数据可知,之间存在线性相关关系,求关于的性回归方程;

(2)假设2019年该省一本线为分,利用(1)中求出的回归方程预测2019年该大学录取平均分.

参考公式:

查看答案和解析>>

同步练习册答案