精英家教网 > 高中数学 > 题目详情

(本小题满分12分)
已知f (x)=
(1)求函数f (x)的值域.
(2)若f (t)=3,求t的值.
(3)用单调性定义证明在[2,+∞)上单调递增.

(1)(-∞,+∞);(2);(3)见解析。

解析试题分析:(1)注意分段函数定义域和值域的求法和要求,第一段值域为(-∞,1],第二段值域为(0,4),
第三段值域为[4,+∞),综上,函数的值域为(-∞,+∞).       ……4分
(2)g (t)=3,即t+2=3,t≤-1,不存在;
x2=3,-1<x<2,解得:x=,即t=
2x=3,x≥2,x不存在.
综上,t的值为.              ……8分
(3)因为函数在[2,+∞)上的解析式为f (x)=2x,任取x1,x2∈[2,+∞),且x1<x2,则
f (x1)-f (x2)=2x1-2x2=2(x1-x2)<0,所以函数在[2,+∞)上单调递增.  ……12分
考点:本题考查分段函数、利用定义证明函数的单调性。
点评:分段函数的值域是各段表达式的y值的并集。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题9分)函数是定义在上的奇函数,当
(Ⅰ)求的值;
(Ⅱ)求的解析式。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分9分)已知函数的定义域为
(1)求
(2)当时,求函数的最大值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数
(Ⅰ)讨论函数的单调区间;
(Ⅱ)若恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数
(1)求函数的定义域;
(2)判断函数的奇偶性;
(3)讨论函数的单调性(不用证明)。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(10分)证明为R上的单调递增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知函数(其中常数
(1)判断函数的单调性,并加以证明;
(2)如果是奇函数,求实数的值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知  
(1)求的值;
(2)当(其中,且为常数)时,是否存在最小值,如果存在求出最小值;如
果不存在,请说明理由;
(3)当时,求满足不等式的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是定义在上的奇函数,且,若时,有成立.
(1)判断上的单调性,并证明;
(2)解不等式:
(3)若当时,对所有的恒成立,求实数的取值范围.

查看答案和解析>>

同步练习册答案