精英家教网 > 高中数学 > 题目详情

【题目】(2015·陕西)如图1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中点,0是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.

【答案】
(1)

见解析。


(2)


【解析】在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=, ∴BE⊥AC,
即在图2中,BE⊥OA1 , BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,
由BC=(-,0),A1C=(0,,-),
CD=BE=(-,0,0)
设平面A1BC的法向量为m=(x,y,z),平面A1CD的法向量为n=(x,y,z),
则mBC=0mA1C=0得-x+y=0y-z=0,令x=(Ⅰ)知BE⊥OA1 , BE⊥OC,
∴∠A1OC为二面角A1-BE-C的平面角,
∴∠A1OC=π/2, 如图,建立空间坐标系,
∵A1B=A1E=BC=ED=1.BC∥ED
∴B(,0,0),E(-,0,0),A1(0,0,),C(0,,0), ,则y=1,z=1,即m=(1,1,1),
由nA1C=0nCD=0得x=0y-z=0,取n=(0,1,1),
则cos<m,n>=mn|m||n|==,
即平面A1BC与平面A1CD夹角的余弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】(2015·山东) 如图,三棱台-中,分别为,的中点.

(1)求证:平面
(2)若,,求证:平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数” ;
(2)若甲参加活动,求甲得分X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(2015·陕西)根据如图框图,当输入x为2006时,输出的y=(  )

A.28
B.10
C.4
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若,求的解析式;

2)求的值域,设为实数),求时的最大值

3)对(2)中,若的所有实数恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为,点和点都在椭圆上,直线交x轴于点M.
(1)(Ⅰ)求椭圆C的方程,并求点M的坐标(用表示);
(2)(Ⅱ)设为原点,点与点关于轴对称,直线交X轴于点N.问:Y轴上是否存在点Q,使得?若存在,求点的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知甲、乙两个容器,甲容器容量为x,装满纯酒精,乙容器容量为z,其中装有体积为y的水(x,y<z,单位:L).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精an(单位:L),下列关于数,列{an}的说法正确的是(
A.当x=y=a时,数列{an}有最大值
B.设bn=an+1﹣an(n∈N*),则数列{bn}为递减数列
C.对任意的n∈N* , 始终有
D.对任意的n∈N* , 都有

查看答案和解析>>

同步练习册答案