【题目】(2015·陕西)如图1,在直角梯形ABCD中,AD∥BC,BAD=,AB=BC=1,
AD=2, E是AD的中点,0是AC与BE的交点.将△ABE沿BE折起到△A1BE的位置,如图2.
(1)证明:CD⊥平面A1OC
(2)若平面A1BE⊥平面BCDE,求平面A1BC与平面A1CD夹角的余弦值.
【答案】
(1)
见解析。
(2)
【解析】在图1中,∵AB=BC=1,AD=2,E是AD的中点,∠BAD=, ∴BE⊥AC,
即在图2中,BE⊥OA1 , BE⊥OC,则BE⊥平面A1OC;∵CD∥BE,∴CD⊥平面A1OC;
(Ⅱ)若平面A1BE⊥平面BCDE,
由BC=(-,,0),A1C=(0,,-),
CD=BE=(-,0,0)
设平面A1BC的法向量为m=(x,y,z),平面A1CD的法向量为n=(x,y,z),
则mBC=0mA1C=0得-x+y=0y-z=0,令x=(Ⅰ)知BE⊥OA1 , BE⊥OC,
∴∠A1OC为二面角A1-BE-C的平面角,
∴∠A1OC=π/2, 如图,建立空间坐标系,
∵A1B=A1E=BC=ED=1.BC∥ED
∴B(,0,0),E(-,0,0),A1(0,0,),C(0,,0), ,则y=1,z=1,即m=(1,1,1),
由nA1C=0nCD=0得x=0y-z=0,取n=(0,1,1),
则cos<m,n>=mn|m||n|==,
即平面A1BC与平面A1CD夹角的余弦值为.
科目:高中数学 来源: 题型:
【题目】若n是一个三位正整数,且n的个位数字大于十位数字,十位数字大于百位数字,则称n为“三位递增数”(如137,359,567等).在某次数学趣味活动中,每位参加者需从所有的“三位递增数”中随机抽取1个数,且只能抽取一次.得分规则如下:若抽取的“三位递增数”的三个数字之积不能被5整除,参加者得0分;若能被5整除,但不能被10整除,得-1分;若能被10整除,得1分.
(1)写出所有个位数字是5的“三位递增数” ;
(2)若甲参加活动,求甲得分X的分布列和数学期望EX.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列是递增的等比数列,a1+a4=9,a2a3=8,则数列的前n项和等于,解得a1=1,a4=8,或者a1=8,a4=1,但由于是递增数列,即a1=1,a4=8,即q3==8,所以q=2.因而数列的前n项和为 。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的离心率为,点和点都在椭圆上,直线交x轴于点M.
(1)(Ⅰ)求椭圆C的方程,并求点M的坐标(用,表示);
(2)(Ⅱ)设为原点,点与点关于轴对称,直线交X轴于点N.问:Y轴上是否存在点Q,使得?若存在,求点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=1,an+1=3an+1.
(1)证明{an+ }是等比数列,并求{an}的通项公式;
(2)证明: + +…+ < .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知甲、乙两个容器,甲容器容量为x,装满纯酒精,乙容器容量为z,其中装有体积为y的水(x,y<z,单位:L).现将甲容器中的液体倒入乙容器中,直至甲容器中液体倒完或乙容器盛满,搅拌使乙容器中两种液体充分混合,再将乙容器中的液体倒入甲容器中直至倒满,搅拌使甲容器中液体充分混合,如此称为一次操作,假设操作过程中溶液体积变化忽略不计.设经过n(n∈N*)次操作之后,乙容器中含有纯酒精an(单位:L),下列关于数,列{an}的说法正确的是( )
A.当x=y=a时,数列{an}有最大值
B.设bn=an+1﹣an(n∈N*),则数列{bn}为递减数列
C.对任意的n∈N* , 始终有
D.对任意的n∈N* , 都有
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com