精英家教网 > 高中数学 > 题目详情

【题目】已知函数,在处取得极值.

1)求函数的解析式;

2)求函数上的最值.

【答案】(1)(2)函数上的最大值为13和最小值为

【解析】试题分析:1)由函数的极值与导数的关系,得是方程的两个实数根,利用根与系数的关系建立关于 的方程组,解之即可得到的值;

(2)求导,列表,按利用到时求函数在闭区间上的最值的一般步骤可求函数上的最值.

试题解析:

(1)∵,∴

∵在处取得极值,∴,即,。 解得

(2)∵,∴由,解得

上变化时, 的变化如下:

1

+

0

+

单调递增

极大值

单调递减

极小值

单调递增

4

∴由表格可知当时,函数取得最小值,在时,函数取得极大值同时也是最大值,故函数上的最大值为13和最小值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的极大值;

(2)若函数在区间 其中上存在极值,求实数的取值范围;

(3)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将一张纸沿直线l对折一次后,点A(0,4)与点B(8,0)重叠,点C(6,8)与点D(m,n)重叠.
(1)求直线l的方程;
(2)求m+n的值;
(3)直线l上是否存在一点P,使得||PB|﹣|PC||存在最大值,如果存在,请求出最大值,以及此时点P的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)的定义域为D,若存在非零实数m,使得对于任意x∈M(MD),有(x﹣m)∈D且f(x﹣m)≤f(x),则称f(x)为M上的m度低调函数.如果定义域为R的函数f(x)是奇函数,当x≥0时,f(x)=|x﹣a2|﹣a2 , 且f(x)为R上的5度低调函数,那么实数a的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】用数学归纳法证明12+22+…+(n﹣1)2+n2+(n﹣1)2+…+22+12 时,由n=k的假设到证明n=k+1时,等式左边应添加的式子是(
A.(k+1)2+2k2
B.(k+1)2+k2
C.(k+1)2
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的序号是 . ①y=﹣2cos( π﹣2x)是奇函数;
②若α,β是第一象限角,且α>β,则sinα>sinβ;
③x=﹣ 是函数y=3sin(2x﹣ )的一条对称轴;
④函数y=sin( ﹣2x)的单调减区间是[kπ﹣ ,kπ+ ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴,建立极坐标系,曲线的极坐标方程为.

1)写出的普通方程和的直角坐标方程;

(2)设点上,点上,求的最小值及此时的直角坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左顶点和上顶点分别为A、B,左、右焦点分别是F1 , F2 , 在线段AB上有且只有一个点P满足PF1⊥PF2 , 则椭圆的离心率为( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若存在实数x1 , x2 , x3 , x4 , 当x1<x2<x3<x4时满足f(x1)=f(x2)=f(x3)=f(x4),则x1x2x3x4的取值范围是(
A.(7,
B.(21,
C.[27,30)
D.(27,

查看答案和解析>>

同步练习册答案