精英家教网 > 高中数学 > 题目详情
11.某三角形两边之差为2,它们的夹角正弦值为$\frac{4}{5}$,面积为14,那么这两边长分别是(  )
A.3和5B.4和6C.6和8D.5和7

分析 利用面积公式S△ABC=$\frac{1}{2}$acsinB,即可得出ac的值,与a-c=2联立即可得出a,c得值.

解答 解:如图所示,假设已知a-c=2,sinB=$\frac{4}{5}$,
S△ABC=$\frac{1}{2}acsinB$=14,∴ac=35.
结合a-c=2,∵a,c>0,解得a=7,c=5
故选:D.

点评 本题考查余弦定理的应用. 面积公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.设(1+i)x=1+yi,x,y∈R,则|x+yi|=(  )
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知函数f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x≥1}\\{x+c,x<1}\end{array}\right.$,则“c=-1”是“函数在R上单调递增”的充分不必要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.设α为第二象限角,则$\frac{sinα}{cosα}$•$\sqrt{\frac{1}{si{n}^{2}a}-1}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知f(x)=-sin2x+asinx+bcosx是偶函数,且f(π)=-1
(1)求f(x);
(2)已知θ∈(0,$\frac{π}{2}$),且tanθ=$\sqrt{2}$,若对任意x∈[-$\frac{π}{2}$,0],不等式a≤f(2x+θ)+m≤4b恒成立,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的一个顶点的坐标为(0,-1),且右焦点F到直线x-y+1=0的距离为$\sqrt{2}$.
(1)求椭圆C的标准方程;
(2)是否存在斜率为2的直线l,使得当直线l与椭圆C有两个不同交点M,N时,能在直线$y=\frac{5}{3}$上找到一点P,在椭圆C上找到一点Q,满足$\overrightarrow{PM}=\overrightarrow{NQ}$?若存在,求出直线l的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=Asin(ωx+ϕ)(A>0,ω>0,|ϕ|<π)在一个周期内的图象如图所示.
(1)求函数f(x)的解析式与单调递减区间;
(2)函数f(x)的图象上所有点的横坐标扩大到原来的2倍,再向右平移$\frac{π}{2}$个单位长度,得到g(x)的图象,求函数y=g(x)在x∈[0,π]上的最大值及最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.关于圆周率π,数学发展史上出现过许多很有创意的求法,如著名的普丰实验和查理斯实验,受其启发,我们也可以通过设计下面的实验来估计π的值,先请120名同学每人随机写下一个都小于1的正实数对(x,y),再统计两数能与1构成钝角三角形三边的数对(x,y)的个数m;最后在根据统计数m估计π的值,假设统计结果是m=34,那么可以估计π的值为(  )
A.$\frac{22}{7}$B.$\frac{47}{15}$C.$\frac{51}{16}$D.$\frac{53}{17}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.△ABC的内角A,B,C的对边分别为a,b,c.若a2+c2-b2=ac,c=2,点G满足|$\overrightarrow{BG}$|=$\frac{\sqrt{19}}{3}$且$\overrightarrow{BG}$=$\frac{1}{3}$($\overrightarrow{BA}$+$\overrightarrow{BC}$),则sinA=$\frac{3\sqrt{21}}{14}$.

查看答案和解析>>

同步练习册答案