精英家教网 > 高中数学 > 题目详情

【题目】已知函数

时,求曲线在点处切线的方程.

求函数的单调区间.

时,恒成立,求的取值范围.

【答案】(1);(2)见解析;(3).

【解析】试题分析:(1)求导得,利用点斜式即可得切线方程;

(2),结合定义域,讨论即可;

(3)恒成立等价于时恒成立,求导,根据函数的单调性得最值,只需即可.

试题解析:

)由

得:

时,

∴曲线在点处切线的方程为

)函数的定义域为

①若

时,,函数为增函数;

时,

,函数为减函数;

②若

时,

函数为增函数;

时,,函数为减函数,

综上所述,当时,函数的单调增区间为

单调减区间为

时,函数的单调增区间为

单调减区间为

)当时,恒成立等价于时恒成立

,则

可知,当时,为增函数;

时,为减函数,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知P是椭圆上的一点,F1,F2是椭圆的两个焦点

1∠F1PF2=60°时,求△F1PF2的面积;

2∠F1PF2为钝角时,求点P横坐标的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx=-3x2+a6-ax+6.

1解关于a的不等式f1>0;

2若不等式fx>b的解集为-1,3,求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】以下命题:

①“”是“”的充分不必要条件;

②命题“若 ,则 ”的逆否命题为“若 ,则

③对于命题 ,使得 ,则 ,均有

④若 “ 为假命题,则 均为假命题;

其中正确命题的序号为_______________(把所有正确命题的序号都填上).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的标准方程是

(1)求它的焦点坐标和准线方程.

(2)直线L过已知抛物线的焦点且倾斜角为,并与抛物线相交于A、B两点,求弦AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的最小正周期与单调递减区间;

(2)若函数的图象上的所有点的横坐标伸长到原来的倍,所得的图象与直线交点的横坐标由小到大依次是,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】底面为正方形的四棱锥P﹣ABCD,F为PD中点.

(1)求证:PB∥面ACF;
(2)若PD⊥面ABCD,求证:AC⊥面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=anlog2an , 其前n项和为Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)对于n≥2恒成立,求实数m的取值范围.

查看答案和解析>>

同步练习册答案