【题目】已知函数.
()当时,求曲线在点处切线的方程.
()求函数的单调区间.
()当时,恒成立,求的取值范围.
【答案】(1);(2)见解析;(3).
【解析】试题分析:(1)求导得,及,利用点斜式即可得切线方程;
(2)由,结合定义域,讨论和即可;
(3)恒成立等价于在时恒成立,设,求导,根据函数的单调性得最值,只需即可.
试题解析:
()由,
得:,,
当时,,,
∴,,
∴曲线在点处切线的方程为.
()函数的定义域为,.
①若,
当时,,函数为增函数;
和时,
,函数为减函数;
②若,
当和时,,
函数为增函数;
当时,,函数为减函数,
综上所述,当时,函数的单调增区间为,
单调减区间为和,
当时,函数的单调增区间为和,
单调减区间为.
()当时,恒成立等价于在时恒成立,
设,则.
可知,当时,,为增函数;
时,,为减函数,
所以,
故.
科目:高中数学 来源: 题型:
【题目】已知P是椭圆上的一点,F1,F2是椭圆的两个焦点。
(1)当∠F1PF2=60°时,求△F1PF2的面积;
(2)当∠F1PF2为钝角时,求点P横坐标的取值范围。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=-3x2+a(6-a)x+6.
(1)解关于a的不等式f(1)>0;
(2)若不等式f(x)>b的解集为(-1,3),求实数a,b的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】以下命题:
①“”是“”的充分不必要条件;
②命题“若 ,则 ”的逆否命题为“若 ,则 ”;
③对于命题 : ,使得 ,则 : ,均有 ;
④若 “ 为假命题,则 , 均为假命题;
其中正确命题的序号为_______________(把所有正确命题的序号都填上).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的标准方程是,
(1)求它的焦点坐标和准线方程.
(2)直线L过已知抛物线的焦点且倾斜角为,并与抛物线相交于A、B两点,求弦AB的长度.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数.
(1)求函数的最小正周期与单调递减区间;
(2)若函数的图象上的所有点的横坐标伸长到原来的倍,所得的图象与直线交点的横坐标由小到大依次是,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线C的极坐标方程是ρ=2cosθ,以极点为平面直角坐标系的原点,极轴为x轴的正半轴,建立平面直角坐标系,直线L的参数方程是 (t为参数).
(1)求曲线C的直角坐标方程和直线L的普通方程;
(2)设点P(m,0),若直线L与曲线C交于A,B两点,且|PA||PB|=1,求实数m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知单调递增的等比数列{an}满足a2+a3+a4=28,且a3+2是a2 , a4的等差中项.
(1)求数列{an}的通项公式;
(2)设bn=anlog2an , 其前n项和为Sn , 若(n﹣1)2≤m(Sn﹣n﹣1)对于n≥2恒成立,求实数m的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com