精英家教网 > 高中数学 > 题目详情

【题目】如图,在底面是菱形的四棱锥P﹣ABCD中,∠ABC=60°,PA=AC=a,PB=PD= ,点E在PD上,且PE:ED=2:1.

(Ⅰ)证明PA⊥平面ABCD;
(Ⅱ)求以AC为棱,EAC与DAC为面的二面角θ的大小;
(Ⅲ)在棱PC上是否存在一点F,使BF∥平面AEC?证明你的结论.

【答案】解:(Ⅰ)证明因为底面ABCD是菱形,∠ABC=60°,

所以AB=AD=AC=a,在△PAB中,

由PA2+AB2=2a2=PB2知PA⊥AB.

同理,PA⊥AD,所以PA⊥平面ABCD.

(Ⅱ)解:作EG∥PA交AD于G,

由PA⊥平面ABCD.

知EG⊥平面ABCD.作GH⊥AC于H,连接EH,

则EH⊥AC,∠EHG即为二面角θ的平面角.

又PE:ED=2:1,所以

从而 ,θ=30°.

(Ⅲ)解法一以A为坐标原点,直线AD、AP分别为y轴、z轴,过A点垂直平面PAD的直线为x轴,建立空间直角坐标系如图.

由题设条件,相关各点的坐标分别为 .

所以

设点F是棱PC上的点, ,其中0<λ<1,

=

解得 .即 时,

亦即,F是PC的中点时, 共面.

又BF平面AEC,所以当F是棱PC的中点时,BF∥平面AEC.

解法二:当F是棱PC的中点时,BF∥平面AEC,证明如下,

证法一:取PE的中点M,连接FM,则FM∥CE.①

,知E是MD的中点.

连接BM、BD,设BD∩AC=O,则O为BD的中点.

所以BM∥OE.②

由①、②知,平面BFM∥平面AEC.

又BF平面BFM,所以BF∥平面AEC.

证法二:

因为 = =

所以 共面.

又BF平面ABC,从而BF∥平面AEC.


【解析】(I)利用勾股定理可证PA⊥AB、PA⊥AD,进而可证PA⊥平面ABCD;(II)先找出以AC为棱,EAC与DAC为面的二面角θ的平面角,再利用解三角形可得以AC为棱,EAC与DAC为面的二面角θ的大小;(III)解法一:先建立空间直角坐标系,再证 共面,进而可得点F的位置;解法二:证法一先利用三角形的中位线可证BM∥OE,再利用面面平行可证BF∥平面AEC;证法二利用向量表示可证 共面,进而可证BF∥平面AEC.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数上的一个最高点的坐标为,由此点到相邻最低点间的曲线与x轴交于点,若.

(1)求的解析式.

(2)求上的值域.

(3)若对任意实数,不等式上恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】△ABC中,内角A、B、C的对边分别为abc,已知b2=accosB=

(1)求的值;

(2)设,求a+c的值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】y=f(t)是某港口水的深度y()关于时间t(小时)的函数,其中.下表是该港口某一天从0时至24时记录的时间t与水深y的关系:

t

0

3

6

9

12

15

18

21

24

y

12

15.1

12.1

9.1

12

14.9

11.9

9

12.1

经长期观察,函数y=f(t)的图象可以近似地看成函数的图象.⑴求的解析式;⑵设水深不小于米时,轮船才能进出港口。某轮船在一昼夜内要进港口靠岸办事,然后再出港。问该轮船最多能在港口停靠多长时间?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P﹣ABCD中,PD⊥平面ABCD,AD∥BC,CD=13,AB=12,BC=10,AD=5,PD=8,点E,F分别是PB,DC的中点.

(1)求证:EF∥平面PAD;
(2)求EF与平面PDB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an},a1=2,a2=6,且满足=2(n≥2且n∈N+)

(1)证明:新数列{an+1-an}是等差数列,并求出an的通项公式

(2)令bn=,设数列{bn}的前n项和为Sn,证明:S2n-Sn<5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=ax3+3x2+1,若至少存在两个实数m,使得f(﹣m),f(1)、f(m+2)成等差数列,则过坐标原点作曲线y=f(x)的切线可以作(
A.3条
B.2条
C.1条
D.0条

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=alnx+ ,a∈R.
(1)若f(x)的最小值为0,求实数a的值;
(2)证明:当a=2时,不等式f(x)≥ ﹣e1x恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙三人独立地对某一技术难题进行攻关.甲能攻克的概率为 ,乙能攻克的概率为 ,丙能攻克的概率为
(1)求这一技术难题被攻克的概率;
(2)若该技术难题末被攻克,上级不做任何奖励;若该技术难题被攻克,上级会奖励a万元.奖励规则如下:若只有1人攻克,则此人获得全部奖金a万元;若只有2人攻克,则奖金奖给此二人,每人各得 万元;若三人均攻克,则奖金奖给此三人,每人各得 万元.设甲得到的奖金数为X,求X的分布列和数学期望.

查看答案和解析>>

同步练习册答案