精英家教网 > 高中数学 > 题目详情

【题目】已知函数是实数常数)的图像上的一个最高点是,与该最高点最近的一个最低点是.

(1)求函数的解析式及其单调递增区间;

(2)在中,角所对的边分别为,且,角的取值范围是区间。当时,试求函数的取值范围。

【答案】(1);(2)

【解析】

(1)先根据配角公式化简函数解析式,再根据条件得周期解得,代入最高点坐标解得c,最后根据正弦函数性质求增区间,(2)先根据向量数量积解得角B,再根据三角形内角关系求角的取值范围,最后根据正弦函数性质求函数值域.

(1)∵,∴.

分别是函数图像上相邻的最高点和最低点,

,解得.

,解得.

∴函数的单调递增区间是.

(2)∵在中,,∴.

,即. ∴.

时,,考察正弦函数的图像,

可知,.∴,即函数的取值范围是.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为Ⅰ)求曲线的直角坐标方程,并指出其表示何种曲线;(Ⅱ)设直线与曲线交于两点,若点的直角坐标为,试求当时,的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求的定义域;

2)求函数在区间内的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为常数)在内有两个极值点

(1)求实数的取值范围;

(2)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面和两条长度相等的直线型路面,桥面跨度的长不超过米,拱桥所在圆的半径为米,圆心在水面上,且所在直线与圆分别在连结点处相切.,已知直线型桥面每米修建费用是元,弧形桥面每米修建费用是.

1)若桥面(线段和弧)的修建总费用为元,求关于的函数关系式;

2)当为何值时,桥面修建总费用最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若曲线处的切线的方程为,求实数的值;

2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

3)若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的左、右焦点分别为 ,且离心率为 为椭圆上任意一点,当时, 的面积为1.

(1)求椭圆的方程;

(2)已知点是椭圆上异于椭圆顶点的一点,延长直线 分别与椭圆交于点 ,设直线的斜率为,直线的斜率为,求证: 为定值.

【答案】(1);(2)

【解析】试题分析:(1)设由题,由此求出,可得椭圆的方程;

(2)设

当直线的斜率不存在时,可得

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去通过运算可得

,同理可得,由此得到直线的斜率为

直线的斜率为,进而可得.

试题解析:(1)设由题

解得,则

椭圆的方程为.

(2)设

当直线的斜率不存在时,设,则

直线的方程为代入,可得

,则

直线的斜率为,直线的斜率为

当直线的斜率不存在时,同理可得.

当直线的斜率存在时,

设直线的方程为,则由消去可得:

,则,代入上述方程可得

,则

设直线的方程为,同理可得

直线的斜率为

直线的斜率为

.

所以,直线的斜率之积为定值,即.

型】解答
束】
21

【题目】已知函数 ,在处的切线方程为.

(1)求

(2)若,证明: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数在定义域上单调递增,若对任意的成立,则实数的最小值为__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若定义在R上的偶函数满足,且, ,则函数的零点个数是( )

A. 6B. 8C. 2D. 4

查看答案和解析>>

同步练习册答案