精英家教网 > 高中数学 > 题目详情
5.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(1+x,x),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则x的值为$-\frac{1}{3}$.

分析 由$\overrightarrow{a}$⊥$\overrightarrow{b}$,可得$\overrightarrow{a}$•$\overrightarrow{b}$=0,即可得出.

解答 解:∵$\overrightarrow{a}$⊥$\overrightarrow{b}$,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=(1+x)+2x=1+3x=0,
解得x=$-\frac{1}{3}$,
故答案为:-$\frac{1}{3}$.

点评 本题考查了向量垂直与数量积的关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.在平面直角坐标系中,设M、N、T是圆C:(x-1)2+y2=4上不同三点,若存在正实数a,b,使$\overrightarrow{CT}$=a$\overrightarrow{CM}$+b$\overrightarrow{CN}$,则$\frac{{a}^{3}+a{b}^{2}+2ab+b+1}{a}$的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.如图的程序框图表示算法的运行结果是(  )
A.-2B.2C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,已知四边形ABCD是椭圆3x2+4y2=12的内接平行四边形,且BC,AD分别经过椭圆的焦点F1,F2
(Ⅰ)若直线AC的方程为x-2y=0,求AC的长;
(Ⅱ)求平行四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设空间直角坐标系中A(1,0,0),B(0,1,0),C(1,1,0),则点P(x,y,3)到平面ABC的距离是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线(a+1)x+2y=0与直线x-ay=1互相垂直,则实数a的值等于(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若4≤a≤8,0≤b≤2,则a+b的取值范围是(  )
A.(4,10)B.[4,10]C.(6,8)D.[6,8]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.椭圆$\frac{x^2}{2}+{y^2}$=1上一点P到右焦点的距离为$\frac{{\sqrt{2}}}{2}$,则点P到左准线的距离为3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在四棱锥P-ABCD中,侧面PCD⊥底面ABCD,PD⊥CD,底面ABCD是直角梯形,AB∥CD,∠ADC=90°,AB=AD=PD=2,CD=4.
(1)求证:BC⊥平面PBD;
(2)设E是侧棱PC上一点,且CE=2PE,求四面体P-BDE的体积.

查看答案和解析>>

同步练习册答案