精英家教网 > 高中数学 > 题目详情

【题目】为了调查生活规律与患胃病是否与有关,某同学在当地随机调查了20030岁以上的人,并根据调查结果制成了不完整的列联表如下:

不患胃病

患胃病

总计

生活有规律

60

40

生活无规律

60

100

总计

100

(1)补全列联表中的数据;

(2)用独性检验的基本原理,说明生活无规律与患胃病有关时,出错的概率不会超过多少?

参考公式和数表如下:

0.50

0.40

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

/p>

0.455

0.708

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)列联表见解析 (2)

【解析】

(1)由已知数据作出2×2列联表即可.
2)由列联表,结合计算公式,求得的值,由此判断出两个量之间的关系.

(1) 完善列联表中的数据如下:

不患胃病

患胃病

总计

生活有规律

60

40

100

生活无规律

40

60

100

总计

100

100

200

(2)(1)中的列联表可得: .

所以,的把握认为生活无规律与患胃病有关故认为生活无规律与患胃病有关时,出错的概率不会超过

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|ax-2|,不等式f(x)≤4的解集为{x|-2≤x≤6}.

(1)求实数a的值;

(2)设g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】科研人员在对人体脂肪含量和年龄之间关系的研究中,获得了一些年龄和脂肪含量的简单随机样本数据,如下表:

(年龄/岁)

26

27

39

41

49

53

56

58

60

61

(脂肪含量/%)

14.5

17.8

21.2

25.9

26.3

29.6

31.4

33.5

35.2

34.6

根据上表的数据得到如下的散点图.

(1)根据上表中的样本数据及其散点图:

(i)求

(i)计算样本相关系数(精确到0.01),并刻画它们的相关程度.

(2)若关于的线性回归方程为,求的值(精确到0.01),并根据回归方程估计年龄为50岁时人体的脂肪含量.

附:参考数据:

参考公式:相关系数

回归方程中斜率和截距的最小二乘估计公式分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】20175月,来自一带一路沿线的20国青年评选出了中国的新四大发明:高铁、扫码支付、共享单车和网购.乘坐高铁可以网络购票,为了研究网络购票人群的年龄分布情况,在531日重庆到成都高铁9600名网络购票的乘客中随机抽取了120人进行了统计并记录,按年龄段将数据分成6组:,得到如图所示的直方图:

1)若从总体的9600名网络购票乘客中随机抽取一人,估计其年龄大于35岁的概率;

2)试估计总体中年龄在区间内的人数;

3)试通过直方图,估计531日当天网络购票的9600名乘客年龄的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某农户计划种植莴笋和西红柿,种植面积不超过亩,投入资金不超过万元,假设种植莴笋和西红柿的产量、成本和售价如下表:

年产量/亩

年种植成本/亩

每吨售价

莴笋

5吨

1万元

0.5万元

西红柿

4.5吨

0.5万元

0.4万元

那么,该农户一年种植总利润(总利润=总销售收入-总种植成本)的最大值为____万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列说法:

1)命题的否定形式是

2)已知,则

3)已知回归直线的斜率的估计值是2,样本点的中心为,则回归直线方程为

4)对分类变量的随机变量的观测值来说,越小,判断有关系的把握越大;

5)若将一组样本数据中的每个数据都加上同一个常数后,则样本的方差不变.

其中正确说法的个数为(

A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为发展业务,某调研组对两个公司的产品需求量进行调研,准备从国内个人口超过万的超大城市和)个人口低于万的小城市随机抽取若干个进行统计,若一次抽取个城市,全是小城市的概率为.

(1)求的值;

(2)若一次抽取个城市,则:①假设取出小城市的个数为,求的分布列和期望;

②若取出的个城市是同一类城市,求全为超大城市的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程是 (为参数),以原点为极点, 轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.

(Ⅰ)求曲线的普通方程与直线的直角坐标方程;

(Ⅱ)已知直线与曲线交于 两点,与轴交于点,求.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆与抛物线有一个相同的焦点,且该椭圆的离心率为

(Ⅰ)求该椭圆的标准方程:

(Ⅱ)求过点的直线与该椭圆交于AB两点,O为坐标原点,若,求的面积.

查看答案和解析>>

同步练习册答案