精英家教网 > 高中数学 > 题目详情

【题目】给定一个数列在这个数列里任取项,并且不改变它们在数列中的先后次序,得到的数列称为数列的一个阶子数列

已知数列的通项公式为为常数,等差数列

数列的一个3阶子数列

1的值;

2等差数列的一个 阶子数列,且

为常数,,求证:

3等比数列的一个 阶子数列,

求证:

【答案】10;2证明见解析;3证明见解析

【解析】

试题1成等差数列得,可解得2是等差数列,由,知,从而,这样数列是递减的,但它是的子数列,因此各项就均为正,由此有,从而有,可得结论;32,类似得,从而下面要证,这可由证明函数的单调性得其最大值得到结论

试题解析:1因为成等差数列,所以

又因为

代入得,解得

2设等差数列的公差为

因为,所以

从而

所以

又因为,所以

所以

又因为,所以

3,等比数列的公比为

因为,所以

从而

所以

设函数

时,函数为单调增函数

因为当,所以所以

【注:若有其它解法,请酌情给分】

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,已知,B为AC的中点,分别以AB,AC为直径在AC的同侧作半圆,M,N分别为两半圆上的动点不含端点A,B,,且,则的最大值为______

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校抽取了100名学生期中考试的英语和数学成绩,已知成绩都不低于100分,其中英语成绩的频率分布直方图如图所示,成绩分组区间是.

1)根据频率分布直方图,估计这100名学生英语成绩的平均数和中位数(同一组数据用该区间的中点值作代表);

2)若这100名学生数学成绩分数段的人数y的情况如下表所示:

分组区间

y

15

40

40

m

n

且区间内英语人数与数学人数之比为,现从数学成绩在的学生中随机选取2人,求选出的2人中恰好有1人数学成绩在的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为,点在椭圆上,且满足,当变化时,给出下列三个命题:

①点的轨迹关于轴对称;②的最小值为2;

③存在使得椭圆上满足条件的点仅有两个,

其中,所有正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

1)求曲线在点处的切线方程;

2)若上恒成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若存在极小值,求实数的取值范围;

(2)设的极小值点,且,证明:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列说法中错误的个数是(

①从某社区65户高收入家庭,280户中等收入家庭,105户低收入家庭中选出100户调查社会购买力的某一项指标,应采用的最佳抽样方法是分层抽样

②线性回归直线一定过样本中心点

③对于一组数据,如果将它们改变为,则平均数与方差均发生变化

④若一组数据123的众数是2,则这组数据的中位数是2

⑤用系统抽样方法从编号为123,…,700的学生中抽样50人,若第2段中编号为20的学生被抽中,按照等间隔抽取的方法,则第5段中被抽中的学生编号为76

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆的中心在坐标原点,长轴均为且在轴上,短轴长分别为,过原点且不与轴重合的直线的四个交点按纵坐标从大到小依次为,记的面积分别为.

1)当直线轴重合时,若,求的值;

2)当变化时,是否存在与坐标轴不重合的直线,使得?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)讨论函数的单调性.

(Ⅱ)若时,存在两个正实数满足,求证:

查看答案和解析>>

同步练习册答案