分析 由题意知抛掷一粒骰子出现奇数和出现2点是互斥事件,又根据两个事件的概率,根据互斥事件的概率之和得到出现奇数点或2点的概率.
解答 解:由题意知抛掷一粒骰子出现奇数和出现2点是互斥事件,
∴P(A)=$\frac{3}{6}$=$\frac{1}{2}$,P(B)=$\frac{1}{6}$,
∴出现奇数点或2点的概率根据互斥事件的概率公式得到P=P(A)+P(B)=$\frac{1}{2}$+$\frac{1}{6}$=$\frac{2}{3}$,
故答案为:$\frac{2}{3}$.
点评 本题考查互斥事件的概率,解题的关键是看清两个事件的互斥关系,再根据互斥事件的概率公式得到结果,是一个基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 2 | B. | ±2 | C. | ±4 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com