精英家教网 > 高中数学 > 题目详情
13.已知A={(x,y)|y=3x-2},B={(x,y)|y=-x+10},求A∩B.

分析 求出两条直线的交点坐标,即可得到结果.

解答 解:A={(x,y)|y=3x-2},B={(x,y)|y=-x+10},
可得$\left\{\begin{array}{l}y=3x-2\\ y=-x+10\end{array}\right.$,解得$\left\{\begin{array}{l}x=3\\ y=7\end{array}\right.$,
A∩B═{(3,7)}.

点评 本题考查交集的求法,直线方程的交点坐标的求法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.两条相交或平行的直线可以确定一个平面.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知sin($\frac{π}{2}$+α)=-$\frac{1}{3}$,α∈(π,$\frac{3π}{2}$),则sin(3π-α)的值为-$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.(1)已知角θ的终边在直线y=-2x上,求5sinθ-$\frac{2}{cosθ}$的值;
(2)化简$\frac{sin(α+nπ)+sin(α-nπ)}{sin(α+nπ)•cos(α-nπ)}$(n∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(x)=x2+2x+1,则f[f(0)]=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.作出下列函数一个周期的图象,并指出振幅、周期和初相.
(1)y=3sin($\frac{1}{2}$x+$\frac{π}{6}$);
(2)y=$\frac{1}{2}$sin(3x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设O为△ABC的外心,且$\overrightarrow{OA}$$+\overrightarrow{OB}$+$\sqrt{3}$$\overrightarrow{OC}$=$\overrightarrow{0}$,则△ABC的内角C=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知两非零向量$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$不共线.设$\overrightarrow{a}$=λ$\overrightarrow{{e}_{1}}$+μ$\overrightarrow{{e}_{2}}$(λ、μ∈R且λ22≠0),则(  )
A.$\overrightarrow{a}$∥$\overrightarrow{{e}_{1}}$B.$\overrightarrow{a}$∥$\overrightarrow{{e}_{2}}$
C.$\overrightarrow{a}$与$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$共面D.以上三种情况均有可能

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在复平面内,复数$\frac{-2-3i}{i}$对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案