精英家教网 > 高中数学 > 题目详情

【题目】已知函数,以下结论正确的个数为(

①当时,函数的图象的对称中心为

②当时,函数上为单调递减函数;

③若函数上不单调,则

④当时,上的最大值为15

A.1B.2C.3D.4

【答案】C

【解析】

逐一分析选项,①根据函数的对称中心判断;②利用导数判断函数的单调性;③先求函数的导数,若满足条件,则极值点必在区间;④利用导数求函数在给定区间的最值.

为奇函数,其图象的对称中心为原点,根据平移知识,函数的图象的对称中心为,正确.

②由题意知.因为当时,

,所以上恒成立,所以函数上为单调递减函数,正确.

③由题意知,当时,,此时上为增函数,不合题意,故

,解得.因为上不单调,所以上有解,

,解得,正确.

④令,得.根据函数的单调性,上的最大值只可能为

因为,所以最大值为64,结论错误.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在给出的下列命题中,正确的是(

A.是同一平面上的四个点,若,则点必共线

B.若向量是平面上的两个向量,则平面上的任一向量都可以表示为,且表示方法是唯一的

C.已知平面向量满足为等腰三角形

D.已知平面向量满足,且,则是等边三角形

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新中国成立70周年国庆阅兵庆典中,众多群众在脸上贴着一颗红心,以此表达对祖国的热爱之情,在数学中,有多种方程都可以表示心型曲线,其中有著名的笛卡尔心型曲线,如图,在直角坐标系中,以原点O为极点,x轴正半轴为极轴建立极坐标系.图中的曲线就是笛卡尔心型曲线,其极坐标方程为),M为该曲线上的任意一点.

1)当时,求M点的极坐标;

2)将射线OM绕原点O逆时针旋转与该曲线相交于点N,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,直线l的参数方程为m为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为,直线与曲线C交于MN两点.

(1)求直线l的普通方程和曲线C的直角坐标方程;

(2)求|MN|.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分12分)

已知函数是奇函数,的定义域为.当时, .(e为自然对数的底数).

(1)若函数在区间上存在极值点,求实数的取值范围;

(2)如果当x≥1时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线是曲线的切线.

1)求函数的解析式,

2)若,证明:对于任意有且仅有一个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中, 平面平面 分别为中点.

1)求证:

2)求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论中正确的个数是( ).

①在中,若,则是等腰三角形;

②在中,若 ,则

③两个向量共线的充要条件是存在实数,使

④等差数列的前项和公式是常数项为0的二次函数.

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,是等边三角形,

1)求证:

2)求直线与平面所成的角的正弦值.

查看答案和解析>>

同步练习册答案