精英家教网 > 高中数学 > 题目详情

在△ABC中,a2+b2=c2+ab,且sinAsinB=数学公式,则△ABC为 ________三角形.

等边
分析:先利用余弦定理把题设等式代入求得cosC的值,判断出C的值,进而利用两角和公式和题设sinAsinB的值求得cosAcosB的值,进而求得cos(A-B)=1,判断出A=B,进而可推断出三角形的形状.
解答:由余弦定理,得c2=a2+b2-2abcosC.
∵a2+b2=c2+ab,
∴ab-2abcosC=0.
∴cosC=,∴C=60°
∵sinAsinB=,cos(A+B)=cos(180°-C)=cos120°=-
cos(A+B)=cosAcosB-sinAsinB,
∴cosAcosB=
∴cos(A-B)=cosAcosB+sinAsinB=1.
∵-π<A-B<π,
∴A-B=0.
∴A=B=60°
∴△ABC是等边三角形.
故答案为:等边.
点评:本题主要考查了三角形形状的判断.一般需要借助正弦定理和余弦定理来解决.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,a2=b2+c2+bc,则A=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2=b2+c2+bc,则A等于(  )
A、120°B、60°C、45°D、30°

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2-c2+b2=ab,则角C的大小为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2+b2-c2=ab,则C为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,a2+
2
ab+b2=c2
,则C等于(  )
A、45°B、60°
C、120°D、135°

查看答案和解析>>

同步练习册答案