【题目】已知点,圆,过点的动直线与圆交于两点,线段的中点为,为坐标原点.
(Ⅰ)求的轨迹方程;
(Ⅱ)当(不重合)时,求的方程及的面积.
【答案】(I);(II)(或) ,
【解析】
(Ⅰ)由圆C的方程求出圆心坐标和半径,设出M坐标,由与数量积等于0列式得M的轨迹方程;
(Ⅱ)设M的轨迹的圆心为N,由|OP|=|OM|得到ON⊥PM.求出ON所在直线的斜率,由直线方程的点斜式得到PM所在直线方程,由点到直线的距离公式求出O到l的距离,再由弦心距、圆的半径及弦长间的关系求出PM的长度,代入三角形面积公式得答案.
(I)圆C的方程可化为,∴圆心为,半径为4,设,
∴由题设知 ,即.由于点在圆的内部,所以的轨迹方程是.
(II)由(I)可知的轨迹是以点为圆心,为半径的圆.
由于,故在线段的垂直平分线上,又在圆上,从而.
∵的斜率为3 ∴的方程为.(或).又,到的距离为,,∴的面积为
科目:高中数学 来源: 题型:
【题目】某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸x(mm)之间近似满足关系式(b、c为大于0的常数).按照某项指标测定,当产品质量与尺寸的比在区间内时为优等品.现随机抽取6件合格产品,测得数据如下:
尺寸x(mm) | 38 | 48 | 58 | 68 | 78 | 88 |
质量y (g) | 16.8 | 18.8 | 20.7 | 22.4 | 24 | 25.5 |
质量与尺寸的比 | 0.442 | 0.392 | 0.357 | 0.329 | 0.308 | 0.290 |
(Ⅰ)现从抽取的6件合格产品中再任选3件,记为取到优等品的件数,试求随机变量的分布列和期望;
(Ⅱ)根据测得数据作了初步处理,得相关统计量的值如下表:
75.3 | 24.6 | 18.3 | 101.4 |
(ⅰ)根据所给统计量,求y关于x的回归方程;
(ⅱ)已知优等品的收益(单位:千元)与的关系为,则当优等品的尺寸x为何值时,收益的预报值最大?(精确到0.1)
附:对于样本 ,其回归直线的斜率和截距的最小二乘估计公式分别为:,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知直四棱柱的底面是直角梯形,,,、分别是棱、上的动点,且,,,.
(1)证明:无论点怎样运动,四边形都为矩形;
(2)当时,求几何体的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,已知点是圆心为半径为的半圆弧上从点数起的第一个三等分点,点是圆心为半径为的半圆弧的中点,、分别是两个半圆的直径,,直线与两个半圆所在的平面均垂直,直线、共面.
(1)求三棱锥的体积;
(2)求直线与所成角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,以原点为圆心,椭圆的短半轴长为半径的圆与直线相切.
(1)求椭圆的标准方程;
(2)若直线与椭圆相交于两点且.求证: 的面积为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(本小题满分12分)
某菜园要将一批蔬菜用汽车从所在城市甲运至亚运村乙,已知从城市甲到亚运村乙只有两条公路,且运费由菜园承担.
若菜园恰能在约定日期(月日)将蔬菜送到,则亚运村销售商一次性支付给菜园20万元; 若在约定日期前送到,每提前一天销售商将多支付给菜园1万元; 若在约定日期后送到,每迟到一天销售商将少支付给菜园1万元.
为保证蔬菜新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送蔬菜,已知下表内的信息:
统计信息 | 不堵车的情况下到达亚运村乙所需 时间 (天) | 堵车的情况下到达亚运村乙所需时间 (天) | 堵车的 | 运费 |
公路1 | 2 | 3 | ||
公路2 | 1 | 4 |
(注:毛利润销售商支付给菜园的费用运费)
(Ⅰ) 记汽车走公路1时菜园获得的毛利润为(单位:万元),求的分布列和数学期望;
(Ⅱ) 假设你是菜园的决策者,你选择哪条公路运送蔬菜有可能让菜园获得的毛利润更多?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为,物理,化学,生物获一等奖的概率都是,且四门学科是否获一等奖相互独立.
(1)求该同学至多有一门学科获得一等奖的概率;
(2)用随机变量表示该同学获得一等奖的总数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知等差数列满足:,.的前n项和为.
(Ⅰ)求 及;
(Ⅱ)若 ,(),求数列的前项和.
【答案】(Ⅰ), (Ⅱ)=
【解析】
试题分析:(Ⅰ)设出首项a1和公差d ,利用等差数列通项公式,就可求出,再利用等差数列前项求和公式就可求出;(Ⅱ)由(Ⅰ)知,再利用 ,(),就可求出,再利用错位相减法就可求出.
试题解析:(Ⅰ)设等差数列{an}的首项为a1,公差为d
∵ , ∴ 解得
∴ ,
(Ⅱ)∵ , ∴
∵ ∴
∴
= (1- + - +…+-)
=(1-) =
所以数列的前项和= .
考点:1.等差数列的通项公式; 2. 等差数列的前n项和公式; 3.裂项法求数列的前n项和公式
【题型】解答题
【结束】
18
【题目】在如图所示的几何体中,四边形是等腰梯形, , , 平面, , .
()求证: 平面.
()求二面角的余弦值.
()在线段(含端点)上,是否存在一点,使得平面,若存在,求出的值;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com