精英家教网 > 高中数学 > 题目详情
5.已知M是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)左支上一点,A、F分别为双曲线的右顶点和左焦点,且△MAF为等边三角形,则双曲线C的离心率为(  )
A.2B.4C.$\sqrt{5}$-1D.$\sqrt{5}$+1

分析 求出M的坐标,利用双曲线的第二定义,列出方程,即可求出双曲线C的离心率.

解答 解:由题意,A(-a,0),F(c,0),△MAF为等边三角形,
则M($\frac{c-a}{2}$,$\frac{\sqrt{3}(c+a)}{2}$),
由双曲线的定义可得$\frac{c+a}{\frac{c-a}{2}-\frac{{a}^{2}}{2}}$=$\frac{c}{a}$
∴c2-3ac-4a2=0,
∴e2-3e-4=0,
∴e=4.
故选:B.

点评 本题考查双曲线C的离心率,考查双曲线的第二定义,正确运用双曲线的第二定义是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.如图所示,△ABC和△BCD都是正三角形,平面ABC⊥平面BCD,连接AD,E是线段AD的中点.
(1)判断直线CE与平面ABD是否垂直,并说明理由;
(2)由二面角D-CE-B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知向量$\overrightarrow a$=(2,-1),$\overrightarrow b$=(x,1)(x∈R).
(1)若$\overrightarrow a,\overrightarrow b$的夹角为锐角,求x的范围;
(2)当3$\overrightarrow a-2\overrightarrow b$=(4,y)时,求x+y的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.“a=-1”是“直线x+ay=1与直线ax+y=5平行”的(  )条件.
A.充分但不必要B.必要但不充分
C.充分D.既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,三角形PDC所在的平面与长方形ABCD所在的平面垂直,
PD=PC=4,AB=6,BC=3.
(1)证明:BC⊥PD
(2)证明:求点C到平面PDA的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.从区间[0,1]内任取两个数x,y,则x+y≤1的概率为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an}中,其前n项和Sn满足Sn=3an-2(n∈N*
(1)求证:数列{an}为等比数列,并求{an}的通项公式;
(2)设bn=(n+1)•an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知△ABC的内角A,B,C的对边分别为a,b,c,若a=1,2cosC+c=2b,则△ABC的外接圆的面积是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若?x∈(0,+∞),不等式ax-lnx>0恒成立,则a的取值范围是(  )
A.(-∞,$\frac{1}{e}$]B.(-∞,e]C.$({\frac{1}{e},+∞})$D.(e,+∞)

查看答案和解析>>

同步练习册答案