分析 (1)可令t=x+1,则x=t-1,代入可得f(t),即f(x)的解析式;再由对数的真数大于0,可得函数的定义域;
(2)运用对数的运算性质和对数函数的单调性,可得不等式,解不等式可得解集;
(3)f(x)在(-1,1)上为增函数.由单调性定义,分设值、作差、变形和定符号、下结论,注意运用对数函数的性质,即可得证.
解答 解:(1)f(x+1)=lg(2+x)-lg(-x),
可令t=x+1,则x=t-1,可得f(t)=lg(1+t)-lg(1-t),
即有f(x)=lg(1+x)-lg(1-x),
由1+x>0且1-x>0,解得-1<x<1,
则函数f(x)的定义域为(-1,1);
(2)由f(x)<1即lg(1+x)-lg(1-x)<1,
即为lg(1+x)<lg10(1-x),
可得0<1+x<10(1-x),
解得-1<x<$\frac{9}{11}$,
则不等式的解集为(-1,$\frac{9}{11}$);
(3)证明:f(x)在(-1,1)上为增函数.
理由:设-1<m<n<1,则f(m)-f(n)=lg(1+m)-lg(1-m)-[lg(1+n)-lg(1-n)]
=lg$\frac{1+m}{1-m}$-lg$\frac{1+n}{1-n}$=lg$\frac{1+m}{1-m}$•$\frac{1-n}{1+n}$=lg$\frac{1+m}{1+n}$•$\frac{1-n}{1-m}$,
由于-1<m<n<1,可得1-m>1-n>0,1+n>1+m>0,
可得0<$\frac{1+m}{1+n}$<1,0<$\frac{1-n}{1-m}$<1,
则0<$\frac{1+m}{1+n}$•$\frac{1-n}{1-m}$<1,
即有lg$\frac{1+m}{1+n}$•$\frac{1-n}{1-m}$<0,
则f(m)-f(n)<0,即f(m)<f(n),
故f(x)在(-1,1)上为增函数.
点评 本题考查函数的解析式的求法,注意运用换元法,考查不等式的解法,注意运用对数函数的单调性,同时考查运用定义法证明函数的单调性,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\sqrt{3}$ | B. | $\frac{3}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{{\sqrt{2}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
鞋码 | 35 | 36 | 37 | 38 | 39 | 40 | 41 | 42 | 43 | 44 | 合计 |
男生 | - | - | 3 | 6 | 8 | 11 | 12 | 6 | 7 | 2 | 55 |
女生 | 4 | 6 | 12 | 9 | 9 | 2 | 2 | - | - | 1 | 45 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com