精英家教网 > 高中数学 > 题目详情

【题目】已知函数.

1)求函数的最小值;

2)设函数,讨论函数的零点个数.

【答案】12)当时,0个零点;当时,1个零点;当时,2个零点.

【解析】

1)令求导,令,求出的值,进而求出单调区间,极小值,求出最小值;

2)求,求出单调区间和极值,得出等价转化为,转化为求直线与函数的图像交点个数,通过求导数的方法,研究函数的单调区间,极值和图像变化趋势,即可求解.

解:(1)令

所以的单调递增区间是,单调递减区间是

所以时,取得极小值,也是最小值,

所以

2,令

的递减区间是,递增区间是

所以的极小值为,也是最小值,.

所以

因为

的递减区间是,递增区间是

所以的极小值为,也是最小值,

所以

所以的递减区间是,递增区间是

又因为,且

所以,当时,0个零点;

时,1个零点;

时,2个零点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】中医药,是包括汉族和少数民族医药在内的我国各民族医药的统称,是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华民族的瑰宝.某科研机构研究发现,某品种中医药的药物成分甲的含量(单位:克)与药物功效(单位:药物单位)之间具有关系.检测这种药品一个批次的5个样本,得到成分甲的平均值为4克,标准差为克,则估计这批中医药的药物功效的平均值为(

A.22药物单位B.20药物单位C.12药物单位D.10药物单位

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若点是函数的图象上任意两,且函数在点A和点B处的切线互相垂直,则下列结论正确的是(

A.B.C.最大值为eD.最大值为e

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在新的劳动合同法出台后,某公司实行了年薪制工资结构改革.该公司从2008年起,每人的工资由三个项目构成,并按下表规定实施:

项目

金额[/(人年)]

性质与计算方法

基础工资

2007年基础工资为20000

考虑到物价因素,决定从2008

起每年递增10%(与工龄无关)

房屋补贴

800

按职工到公司年限计算,每年递增800

医疗费

3200

固定不变

如果该公司今年有5位职工,计划从明年起每年新招5名职工.

1)若今年算第一年,将第n年该公司付给职工工资总额y(万元)表示成年限n的函数;

2)若公司每年发给职工工资总额中,房屋补贴和医疗费的总和总不会超过基础工资总额的p%,求p的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线焦点为为抛物线上在第一象限内一点,为原点,面积为.

1)求抛物线方程;

2)过点作两条直线分别交抛物线于异于点的两点,且两直线斜率之和为

i)若为常数,求证直线过定点

ii)当改变时,求(i)中距离最近的点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若函数fx=cosasinx﹣sinbcosx)没有零点,则a2+b2的取值范围是( )

A.[01B.[0π2C.D.[0π

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥S-ABCD中,底面ABCD为直角梯形,AD//BC,∠SAD =∠DAB= ,SA=3,SB=5,,,.

(1)求证:AB平面SAD

(2)求平面SCD与平面SAB所成的锐二面角的余弦值;

(3)点E,F分别为线段BC,SB上的一点,若平面AEF//平面SCD,求三棱锥B-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知矩形,将沿对角线进行翻折,得到三棱锥,则在翻折的过程中,有下列结论正确的有_____.

①三棱锥的体积的最大值为

②三棱锥的外接球体积不变;

③三棱锥的体积最大值时,二面角的大小是60°;

④异面直线所成角的最大值为90°.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,为坐标原点,CD两点的坐标为,曲线上的动点P满足.又曲线上的点AB满足.

1)求曲线的方程;

2)若点A在第一象限,且,求点A的坐标;

3)求证:原点到直线AB的距离为定值.

查看答案和解析>>

同步练习册答案