已知顶点为原点的抛物线的焦点与椭圆的右焦点重合与在第一和第四象限的交点分别为.
(1)若△AOB是边长为的正三角形,求抛物线的方程;
(2)若,求椭圆的离心率;
(3)点为椭圆上的任一点,若直线、分别与轴交于点和,证明:.
(1);(2);(3)证明过程详见试题解析.
【解析】
试题分析:(1)由△AOB是边长为的正三角形得到,代入抛物线方程中,可以得到所求抛物线方程为;(2)由可知点的横坐标是,因此可结合建立关于的方程为:,解出;(3)利用设而不求的思想,可先设三点后代入椭圆方程中,由于的方程为,求出,,那么化简后得到:.
试题解析:(1)设椭圆的右焦点为,依题意得抛物线的方程为
∵△是边长为的正三角形,
∴点A的坐标是,
代入抛物线的方程解得,
故所求抛物线的方程为
(2)∵, ∴ 点的横坐标是
代入椭圆方程解得,即点的坐标是
∵ 点在抛物线上,
∴,
将代入上式整理得:,
即,解得
∵ ,故所求椭圆的离心率.
(3)证明:设,代入椭圆方程得
而直线的方程为
令得.
在中,以代换得
∴ .
考点:圆锥曲线;直线与圆锥曲线的位置关系.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
4 |
10 |
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考文科数学 题型:填空题
22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
|
查看答案和解析>>
科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题
(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;
(Ⅲ)过A、B分别作抛物C的切线且交于点M,求与面积之和的最小值.
查看答案和解析>>
科目:高中数学 来源:2010-2011学年黑龙江省高三上学期期末考试数学理卷 题型:解答题
(本小题满分12分)
已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C: (p>0)的顶点关于直线l的对称点在该抛物的准线上.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设A、B是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若
(O为原点,A、B异于原点),试求点N的轨迹方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com