精英家教网 > 高中数学 > 题目详情

已知顶点为原点抛物线焦点与椭圆的右焦点重合在第一和第四象限的交点分别为.

1)若△AOB是边长为的正三角形,求抛物线的方程

2)若,求椭圆的离心率

3为椭圆上的任一点,若直线分别与轴交于点,证明:

 

【答案】

1;(23)证明过程详见试题解析.

【解析】

试题分析:1)由△AOB是边长为的正三角形得到,代入抛物线方程中,可以得到所求抛物线方程为;(2)由可知点的横坐标是,因此可结合建立关于的方程为:,解出3)利用设而不求的思想,可先设三点后代入椭圆方程中,由于的方程为,求出,那么化简后得到:.

试题解析:1设椭圆的右焦点为,依题意得抛物线的方程为

∵△是边长为的正三角形,

∴点A的坐标是

代入抛物线的方程解得

故所求抛物线的方程为

2)∵, ∴ 点的横坐标是

代入椭圆方程解得,即点的坐标是

∵ 点在抛物线上,

代入上式整理得:

,解得

,故所求椭圆的离心率.

3证明:设,代入椭圆方程得

而直线的方程为

.

中,以代换

.

考点:圆锥曲线;直线与圆锥曲线的位置关系.

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线G的顶点在原点,焦点在y轴正半轴上,点P(m,4)到其准线的距离等于5.
(I)求抛物线G的方程;
(II)如图,过抛物线G的焦点的直线依次与抛物线G及圆x2+(y-1)2=1交于A、C、D、B四点,试证明|AC|•|BD|为定值;
(III)过A、B分别作抛物G的切线l1,l2且l1,l2交于点M,试求△ACM与△BDM面积之和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线E的顶点在原点,焦点在x轴上,开口向左,且抛物线上一点M到其焦点的最小距离为
1
4
,抛物E与直ly=k(x+1)(k∈R)相交于A、B两点.
(1)求抛物线E的方程;
(2)当△OAB的面积等
10
时,求k的值.

查看答案和解析>>

科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考文科数学 题型:填空题

22.(本题满分15分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;

 
(Ⅲ)过A、B分别作抛物C的切线交于点M,求面积之和的最小值.

 

 

 

 

 

 

 

 

 

 

 

 

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省济宁市高三第二次月考文科数学 题型:解答题

(本题满分18分)已知抛物线C的顶点在原点,焦点在y轴正半轴上,点到其准线的距离等于5.

(Ⅰ)求抛物线C的方程;

(Ⅱ)如图,过抛物线C的焦点的直线从左到右依次与抛物线C及圆交于A、C、D、B四点,试证明为定值;

(Ⅲ)过AB分别作抛物C的切线交于点M,求面积之和的最小值.

 

查看答案和解析>>

科目:高中数学 来源:2010-2011学年黑龙江省高三上学期期末考试数学理卷 题型:解答题

(本小题满分12分)

已知以向量v=(1, )为方向向量的直线l过点(0, ),抛物线C(p>0)的顶点关于直线l的对称点在该抛物的准线上.

(Ⅰ)求抛物线C的方程;

(Ⅱ)设AB是抛物线C上两个动点,过A作平行于x轴的直线m交直线OB于点N,若

 (O为原点,AB异于原点),试求点N的轨迹方程.

 

查看答案和解析>>

同步练习册答案