ÒÑÖª¡÷OFQµÄÃæ»ýΪ2
6
£¬ÇÒ
OF
FQ
=m
£®
£¨1£©Éè
6
£¼m£¼4
6
£¬ÇóÏòÁ¿
OF
Óë
FQ
µÄ¼Ð½Ç¦È
ÕýÇÐÖµµÄÈ¡Öµ·¶Î§£»
£¨2£©ÉèÒÔOΪÖÐÐÄ£¬FΪ½¹µãµÄË«ÇúÏß¾­¹ýµãQ£¨Èçͼ£©£¬|
OF
|=c£¬m=(
6
4
-1)c2
£¬µ±|
OQ
|
È¡µÃ×îСֵʱ£¬Çó´ËË«ÇúÏߵķ½³Ì£®
£¨3£©ÉèF1Ϊ£¨2£©ÖÐËùÇóË«ÇúÏßµÄ×󽹵㣬ÈôA¡¢B·Ö±ðΪ´ËË«ÇúÏß½¥½üÏßl1¡¢l2ÉϵĶ¯µã£¬ÇÒ2|AB|=5|F1F|£¬ÇóÏ߶ÎABµÄÖеãMµÄ¹ì¼£·½³Ì£¬²¢ËµÃ÷¹ì¼£ÊÇʲôÇúÏߣ®
·ÖÎö£º£¨1£©ÓÉ
1
2
•|
OF
|•|
FQ
|sin(¦Ð-¦È)=2
6
|
OF
|•|
FQ
|cos¦È=m
£¬Öªtan¦È=
4
6
m
£¬ÓÉ´ËÄÜÇó³öÏòÁ¿
OF
Óë
FQ
µÄ¼Ð½Ç¦ÈµÄÕýÇÐÖµµÄÈ¡Öµ·¶Î§£®
£¨2£©ÉèËùÇóµÄË«ÇúÏß·½³ÌΪ
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)
£¬Q£¨x1£¬y1£©£¬
FQ
=(x1-c£¬y1)
£¬S¡÷OFQ=
1
2
|
OF
|•|y1|=2
6
£¬y1=¡À
4
6
c
£¬ÓÉ(x1-c)•c=(
6
4
-1)c2
£¬Öª|
OQ
|=
x
2
1
+
y
2
1
=
96
c2
+
3c2
8
¡Ý
12
£®ÓÉ´ËÄÜÇó³ö´ËË«ÇúÏߵķ½³Ì£®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©l1µÄ·½³ÌΪy=
3
x£¬l2
µÄ·½³ÌΪy=-
3
x
£¬ÓÐy1=
3
x1
£¬y2=-
3
x2
£¬ÓÉ2|AB|=5|FF1|£¬Öª2
(x1-x2)2+(y1-y2)2
=5•2c=40
£¬ÓÉ´ËÄÜÇó³öÏ߶ÎABµÄÖеãMµÄ¹ì¼£·½³Ì£®
½â´ð£º½â£º£¨1£©
1
2
•|
OF
|•|
FQ
|sin(¦Ð-¦È)=2
6
|
OF
|•|
FQ
|cos¦È=m

¡àtan¦È=
4
6
m
£¬
¡à
6
£¼m£¼4
6

¡à1£¼tan¦È£¼4£®
¡à
¦Ð
4
£¼¦È£¼arctan4
£®
£¨2£©ÉèËùÇóµÄË«ÇúÏß·½³ÌΪ
x2
a2
-
y2
b2
=1(a£¾0£¬b£¾0)£¬Q(x1£¬y1)£¬Ôò
FQ
=(x1-c£¬y1)

¡àS¡÷OFQ=
1
2
|
OF
|•|y1|=2
6
£¬
¡ày1=¡À
4
6
c
ÓÖÓÉ(x1-c)•c=(
6
4
-1)c2
£¬
¡àx1=
6
4
c
£¬
¡à|
OQ
|=
x
2
1
+
y
2
1
=
96
c2
+
3c2
8
¡Ý
12
£®
µ±ÇÒ½öµ±c=4ʱ£¬|
OQ
|
×îС£¬´ËʱQµÄ×ø±êΪ(
6
£¬
6
)»ò(
6
£¬-
6
)

¡à
6
a2
-
6
b2
=1
a2+b2=16
£¬
¡à
a2=4
b2=12
£¬
¡àËùÇó·½³ÌΪ
x2
4
-
y2
12
=1
£®
£¨3£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©l1µÄ·½³ÌΪy=
3
x£¬l2
µÄ·½³ÌΪy=-
3
x

ÔòÓÐy1=
3
x1
¢Ùy2=-
3
x2
¢Ú
¡ß2|AB|=5|FF1|
¡à2
(x1-x2)2+(y1-y2)2
=5•2c=40

¡à
(x1-x2)2+(y1-y2)2
=20
¢Û
ÉèM£¨x£¬y£©ÓÉ¢Ù¢ÚµÃy1+y2=
3
(x1-x2)
y1-y2=
3
(x1+x2)

¡à2y=
3
(x1-x2)£¬y1-y2=2
3
x

¡àx1-x2=
2y
3
£¬y1-y2=2
3
x

´úÈë¢ÛµÃ(
2y
3
)2+(2
3
x)2=400

¡à
y2
300
+
x2
100
3
=1
£®
¡àMµÄ¹ì¼£Îª½¹µãÔÚyÖáÉϵÄÍÖÔ²£®
µãÆÀ£º±¾Ì⿼²éÖ±ÏßÓëÍÖÔ²µÄλÖùØϵµÄ×ÛºÏÔËÓ㬿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£¬¶ÔÊýѧ˼άÄÜÁ¦ÒªÇó½Ï¸ß£¬ÊǸ߿¼µÄÖص㣮½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÒÑÖª¡÷OFQµÄÃæ»ýΪ2
6
£¬ÇÒ
OF
FQ
=m
£®
£¨1£©µ±
6
£¼m£¼4
6
ʱ£¬ÇóÏòÁ¿
OF
Óë
FQ
µÄ¼Ð½Ç¦ÈµÄÈ¡Öµ·¶Î§£»
£¨2£©Éè|
OF
|=c£¬m=(
6
4
-1)c2
£¬ÈôÒÔÖÐÐÄOΪ×ø±êÔ­µã£¬½¹µãFÔÚx·Ç¸º°ëÖáÉϵÄË«ÇúÏß¾­¹ýµãQ£¬µ±|
OQ
|
È¡µÃ×îСֵʱ£¬Çó´ËË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖª¡÷OFQµÄÃæ»ýΪS£¬ÇÒ
OF
FQ
=1
£®
£¨¢ñ£©Èô
1
2
£¼S£¼
3
2
£¬Çó£¼
OF
£¬
FQ
£¾
µÄ·¶Î§£»
£¨¢ò£©Éè|
OF
|=c(c¡Ý2)£¬S=
3
4
c.
ÈôÒÔOΪÖÐÐÄ£¬FΪһ¸ö½¹µãµÄÍÖÔ²¾­¹ýµãQ£¬ÒÔcΪ±äÁ¿£¬µ±|
OQ
|
È¡×îСֵʱ£¬ÇóÍÖÔ²µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÒÑÖª¡÷OFQµÄÃæ»ýΪ2
6
£¬ÇÒ
OF
FQ
=m£¬?
£¨1£©Éè
6
£¼m£¼4
6
£¬ÇóÏòÁ¿
OF
Óë
FQ
µÄ¼Ð½Ç¦ÈµÄÈ¡Öµ·¶Î§£»?
£¨2£©ÉèÒÔOΪÖÐÐÄ£¬FΪ½¹µãµÄË«ÇúÏß¾­¹ýµãQ£¨Èçͼ£©£¬|
OF
|=c£¬m=£¨
6
4
-1£©c2£¬µ±|
OQ
|È¡×îСֵʱ£¬Çó´ËË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2007•Ìì½òһģ£©ÒÑÖª¡÷OFQµÄÃæ»ýΪ2
6
£¬ÇÒ
OF
FQ
=m£®
£¨1£©Éè4
2
£¼m£¼4
6
£¬ÇóÏòÁ¿
OF
FQ
¼Ð½Ç¦ÈµÄÈ¡Öµ·¶Î§£»
£¨2£©ÉèÒÔOΪÖÐÐÄ£¬FΪ½¹µãµÄË«ÇúÏß¾­¹ýµãQ£¨Èçͼ£©£¬Èô|
OF
|=c£¬m=(
6
4
-1)c2
£¬µ±|
OQ
|È¡×îСֵʱ£¬Çó´ËË«ÇúÏߵķ½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸