【题目】已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,0<φ<π)的图象的一个最高点为(),与之相邻的一个对称中心为,将f(x)的图象向右平移个单位长度得到函数g(x)的图象,则( )
A.g(x)为偶函数
B.g(x)的一个单调递增区间为
C.g(x)为奇函数
D.函数g(x)在上有两个零点
【答案】B
【解析】
先根据函数的部分图象和性质求出f(x)解析式,再根据图象的变换规律求得g(x),最后根据余弦函数性质得出结论.
因为函数f(x)=Acos(ωx+φ)的图象的一个最高点为(),与之相邻的一个对称中心为,
所以A=3,();
所以T=π
所以ω=2;
所以f(x)=3cos(2x+φ);
又因为f()=3cos[(2×()+φ]=3,
所以φ=Kπ;
∵0<φ<π;
∴φ,
∴f(x)=3cos(2x);
因为将f(x)的图象向右平移个单位长度得到函数g(x)的图象,
所以g(x)=3cos[2(x)]=3cos(2x);是非奇非偶函数;
令﹣π+2kπ≤2x2kπ,
所以kπ≤x≤kπ,k∈z;
当k=0时,g(x)的一个单调递增区间为:;
令2xkπ,
解得x,k∈z,
∴函数g(x)在[0,]上只有一个零点.
故选:B.
科目:高中数学 来源: 题型:
【题目】我国南北朝时期的数学家祖暅提出了一条原理:“幂势既同,则积不容异”即夹在两个平行平面之间的两个几何体,被平行于这两个平面的任意平面所截,如果截得的两个截面的面积总相等,那么这两个几何体的体积相等.椭球是椭圆绕其长轴旋转所成的旋转体,如图,将底面半径都为.高都为的半椭球和已被挖去了圆锥的圆柱(被挖去的圆锥以圆柱的上底面为底面,下底面的圆心为顶点)放置于同一平面上,用平行于平面且与平面任意距离处的平面截这两个几何体,截面分别为圆面和圆环,可以证明圆=圆环总成立.据此,椭圆的短半轴长为2,长半轴长为4的椭球的体积是( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知顶点为原点的抛物线,焦点在轴上,直线与抛物线交于、两点,且线段的中点为.
(1)求抛物线的标准方程.
(2)若直线与抛物线交于异于原点的、两点,交轴的正半轴于点,且有,直线,且和有且只有一个公共点,请问直线是否恒过定点?若是,求出定点坐标;若不是,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某数学教师在甲、乙两个平行班采用“传统教学”和“高效课堂”两种不同的教学模式进行教学实验.为了解教改实效,期中考试后,分别从两个班中各随机抽取名学生的数学成绩进行统计,得到如下的茎叶图:
(Ⅰ)求甲、乙两班抽取的分数的中位数,并估计甲、乙两班数学的平均水平和分散程度(不要求计算出具体值,给出结论即可);
(Ⅱ)若规定分数在的为良好,现已从甲、乙两班成绩为良好的同学中,用分层抽样法抽出位同学进行问卷调查,求这位同学中恰含甲、乙两班所有分以上的同学的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年末,武汉出现新型冠状病毒(肺炎疫情,并快速席卷我国其他地区,传播速度很快.因这种病毒是以前从未在人体中发现的冠状病毒新毒株,目前没有特异治疗方法.防控难度很大.武汉市出现疫情最早,感染人员最多,防控压力最大,武汉市从2月7日起举全市之力入户上门排查确诊的新冠肺炎患者、疑似的新冠肺炎患者、无法明确排除新冠肺炎的发热患者和确诊患者的密切接触者等“四类”人员,强化网格化管理,不落一户、不漏一人.在排查期间,某社区将本社区的排查工作人员分为,两个小组,排查工作期间社区随机抽取了100户已排查户,进行了对排查工作态度是否满意的电话调查,根据调查结果统计后,得到如下的列联表.
是否满意 组别 | 不满意 | 满意 | 合计 |
组 | 16 | 34 | 50 |
组 | 2 | 45 | 50 |
合计 | 21 | 79 | 100 |
(1)分别估计社区居民对组、组两个排查组的工作态度满意的概率;
(2)根据列联表的数据,能否有的把握认为“对社区排查工作态度满意”与“排查工作组别”有关?
附表:
附:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com