精英家教网 > 高中数学 > 题目详情

【题目】甲、乙两人各射击一次,击中目标的概率分别是.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.

(1)求甲射击4次,至少1次未击中目标的概率;

(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.

【答案】(1) .

(2) .

【解析】分析:(I)设甲射击5次,至少1次未击中目标为事件,则其对立事件“4次均击中目标”,通过间接法,由n次独立重复事件恰好发生k次的概率公式计算可得答案;Ⅱ)设两人各射击4次,甲恰好击中目标2次,且乙恰好击中目标3为事件B,分别计算甲恰好击中目标2次的概率与乙恰好击中目标3次的概率,再由独立事件的概率的计算公式,计算可得答案.

详解:

(1)设“甲射击4次,至少1次未击中目标”为事件

则其对立事件为“4次均击中目标”,

(2)设“甲恰好击中目标2次且乙恰好击中目标3次”为事件

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某学校为调查该校学生每周使用手机上网的时间,随机收集了若干位学生每周使用手机上网的时间的样本数据(单位:小时),将样本数据分组为,绘制了如下图所示的频率分布直方图,已知内的学生有5人.

(1)求样本容量,并估计该校学生每周平均使用手机上网的时间;

(2)将使用手机上网的时间在内定义为“长时间看手机”;使用手机上网的时间在内定义为“不长时间看手机”.已知在样本中有位学生不近视,其中“不长时间看手机”的有位学生.请将下面的列联表补充完整,并判断能否在犯错误的概率不超过的前提下认为该校学生长时间看手机与近视有关.

近视

不近视

合计

长时间看手机

不长时间看手机

15

合计

25

参考公式和数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线上的任意一点到两定点距离之和为,直线交曲线两点,为坐标原点.

1)求曲线的方程;

2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;

3)若直线过点,求面积的最大值,以及取最大值时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: =1(a>b>0),e= ,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 ,且 (其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=|x﹣1|+|x+a|,
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且当x∈[﹣a,1]时,不等式f(x)≤g(x)有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.

(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:

-1

0

4

5

1

2

2

1

则下列关于的命题:

为函数的一个极大值点;

②函数的极小值点为2;

③函数上是减函数;

④如果当时,的最大值是2,那么的最大值为4;

⑤当时,函数有4个零点.

其中正确命题的序号是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆经过三点.

(1)求圆的标准方程;

(2)若过点N 的直线被圆截得的弦AB的长为,求直线的倾斜角.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a>0,函数
(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;
(2)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案