【题目】甲、乙两人各射击一次,击中目标的概率分别是和.假设两人射击是否击中目标,相互之间没有影响;每次射击是否击中目标,相互之间没有影响.
(1)求甲射击4次,至少1次未击中目标的概率;
(2)求两人各射击4次,甲恰好击中目标2次且乙恰好击中目标3次的概率.
科目:高中数学 来源: 题型:
【题目】某学校为调查该校学生每周使用手机上网的时间,随机收集了若干位学生每周使用手机上网的时间的样本数据(单位:小时),将样本数据分组为,绘制了如下图所示的频率分布直方图,已知内的学生有5人.
(1)求样本容量,并估计该校学生每周平均使用手机上网的时间;
(2)将使用手机上网的时间在内定义为“长时间看手机”;使用手机上网的时间在内定义为“不长时间看手机”.已知在样本中有位学生不近视,其中“不长时间看手机”的有位学生.请将下面的列联表补充完整,并判断能否在犯错误的概率不超过的前提下认为该校学生长时间看手机与近视有关.
近视 | 不近视 | 合计 | |
长时间看手机 | |||
不长时间看手机 | 15 | ||
合计 | 25 |
参考公式和数据:.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知曲线上的任意一点到两定点、距离之和为,直线交曲线于两点,为坐标原点.
(1)求曲线的方程;
(2)若不过点且不平行于坐标轴,记线段的中点为,求证:直线的斜率与的斜率的乘积为定值;
(3)若直线过点,求面积的最大值,以及取最大值时直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C: =1(a>b>0),e= ,其中F是椭圆的右焦点,焦距为2,直线l与椭圆C交于点A、B,点A,B的中点横坐标为 ,且 =λ (其中λ>1).
(1)求椭圆C的标准方程;
(2)求实数λ的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|x﹣1|+|x+a|,
(1)当a=﹣2时,求不等式f(x)<g(x)的解集;
(2)若a>﹣1,且当x∈[﹣a,1]时,不等式f(x)≤g(x)有解,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A(0,3),直线l:y=2x﹣4.设圆C的半径为1,圆心在l上.
(1)若圆心C也在直线y=x﹣1上,过点A作圆C的切线,求切线的方程;
(2)若圆C上存在点M,使MA=2MO,求圆心C的横坐标a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的定义域为,部分对应值如下表,又知的导函数的图象如下图所示:
-1 | 0 | 4 | 5 | |
1 | 2 | 2 | 1 |
则下列关于的命题:
①为函数的一个极大值点;
②函数的极小值点为2;
③函数在上是减函数;
④如果当时,的最大值是2,那么的最大值为4;
⑤当时,函数有4个零点.
其中正确命题的序号是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知a>0,函数 .
(1)记f(x)在区间[0,4]上的最大值为g(a),求g(a)的表达式;
(2)是否存在a使函数y=f(x)在区间(0,4)内的图象上存在两点,在该两点处的切线互相垂直?若存在,求出a的取值范围;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com