精英家教网 > 高中数学 > 题目详情
2.正三棱柱ABC-A1B1C1的侧棱长为3,AB=4,D是A1C1的中点,则AD与面B1DC所成角的正弦值为$\frac{12}{13}$;点E是BC中点,则过A,D,E三点的截面面积是$\frac{3}{2}\sqrt{30}$.

分析 以A为原点,在平面ABC内过A作AC的垂直为x 轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出AD与面B1DC所成角的正弦值和过A,D,E三点的截面面积.

解答 解:∵正三棱柱ABC-A1B1C1的侧棱长为3,AB=4,D是A1C1的中点,
∴以A为原点,在平面ABC内过A作AC的垂直为x 轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
A(0,0,0),D(0,2,3),B1(2$\sqrt{3}$,2,3),C(0,4,0),E($\sqrt{3}$,3,0),
$\overrightarrow{AD}$=(0,2,3),$\overrightarrow{D{B}_{1}}$=(2$\sqrt{3}$,0,0),$\overrightarrow{DC}$=(0,2,-3),$\overrightarrow{AE}$=($\sqrt{3},3,0$),
设平面B1DC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{B}_{1}}=2\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{DC}=2y-3z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,3,2),
设AD与面B1DC所成角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{AD}|}{|\overrightarrow{n}|•|\overrightarrow{AD}|}$=$\frac{12}{\sqrt{13}•\sqrt{13}}$=$\frac{12}{13}$.
∴AD与面B1DC所成角的正弦值为$\frac{12}{13}$;
过D作DF∥AE,交B1C1于F,则梯形AEFD就是过A,D,E三点的截面,
∴AE=$\sqrt{16-4}=2\sqrt{3}$,DF=$\frac{1}{2}AE=\sqrt{3}$,
DF到AE的距离d=|$\overrightarrow{AD}$|•$\sqrt{1-(\frac{\overrightarrow{AD}•\overrightarrow{AE}}{|\overrightarrow{AD}|•|\overrightarrow{AE}|})^{2}}$=$\sqrt{13}$•$\sqrt{\frac{10}{13}}$=$\sqrt{10}$,
∴过A,D,E三点的截面面积是S梯形AEFD=$\frac{1}{2}$($\sqrt{3}+2\sqrt{3}$)×$\sqrt{10}$=$\frac{3}{2}\sqrt{30}$.
故答案为:$\frac{12}{13},\;\frac{3}{2}\sqrt{30}$.

点评 本题考查线面角的正弦值的求法,考查过三点的截面面积的求法,是中档题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.给出下列语句:
①若a,b∈R+,a≠b,则a3+b3>a2b+ab2
②若a,b,m∈R+,a<b,则$\frac{a+m}{b+m}$<$\frac{a}{b}$;
③命题:若x2=1,则x=1或x=-1的逆否命题为:若x≠1且x≠-1,则x2≠1.
④当x∈(0,$\frac{π}{2}$)时,sin x+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$,
其中结论正确的序号为①③(填入所有正确的序号).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知集合A={x|2a≤x≤a+3},B={x|x<-1或x>1}
(Ⅰ)若a=0,求A∩B;
(Ⅱ)若A∪B=R,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.给出下列四个命题:
①函数y=|x|与函数y=($\sqrt{x}$)2表示同一个函数;
②奇函数的图象一定通过直角坐标系的原点;
③函数y=3(x-1)2的图象可由y=3x2的图象向右平移1个单位得到;
④logamn=nlogam(a>0且a≠1,m>0,n∈R)
其中正确命题的序号是③④.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知曲线f(x)=2x2+1在点M(x0,y0)处的瞬时变化率为-4,则点M的坐标为(-1,3).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若某程序框图如图所示,则该程序运行后输出的B等于(  )
A.2B.5C.14D.41

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.公元263年左右,我国数学家刘徽发现,当圆内接多边形的边数无限增加时,多边形面积可无限逼近圆的面积,由此创立了割圆术,利用割圆术刘徽得到了圆周率精确到小数点后面两位的近似值3.14,这就是著名的徽率.如图是利用刘徽的割圆术设计的程序框图,则输出的n值为(  )
参考数据:$\sqrt{3}=1.732$,sin15°≈0.2588,sin7.5°≈0.1305.
A.12B.24C.48D.96

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设双曲线C:$\frac{{y}^{2}}{{a}^{2}}$-$\frac{{x}^{2}}{{b}^{2}}$=1(a>0,b>0)的上、下焦点分别为F1,F2,若在双曲线C的下支上存在一点P使得|PF1|=4|PF2|,则双曲线C的离心率的取值范围为(  )
A.[$\frac{4}{3}$,+∞)B.(1,$\frac{4}{3}$]C.[$\frac{5}{3}$,+∞)D.(1,$\frac{5}{3}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.在抛物线y=4x2上有一点P,使这点到直线y=4x-5的距离最短,求该点P坐标和最短距离.

查看答案和解析>>

同步练习册答案