分析 以A为原点,在平面ABC内过A作AC的垂直为x 轴,AC为y轴,AA1为z轴,建立空间直角坐标系,利用向量法能求出AD与面B1DC所成角的正弦值和过A,D,E三点的截面面积.
解答 解:∵正三棱柱ABC-A1B1C1的侧棱长为3,AB=4,D是A1C1的中点,
∴以A为原点,在平面ABC内过A作AC的垂直为x 轴,AC为y轴,AA1为z轴,建立空间直角坐标系,
A(0,0,0),D(0,2,3),B1(2$\sqrt{3}$,2,3),C(0,4,0),E($\sqrt{3}$,3,0),
$\overrightarrow{AD}$=(0,2,3),$\overrightarrow{D{B}_{1}}$=(2$\sqrt{3}$,0,0),$\overrightarrow{DC}$=(0,2,-3),$\overrightarrow{AE}$=($\sqrt{3},3,0$),
设平面B1DC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{D{B}_{1}}=2\sqrt{3}x=0}\\{\overrightarrow{n}•\overrightarrow{DC}=2y-3z=0}\end{array}\right.$,取z=2,得$\overrightarrow{n}$=(0,3,2),
设AD与面B1DC所成角为θ,
则sinθ=$\frac{|\overrightarrow{n}•\overrightarrow{AD}|}{|\overrightarrow{n}|•|\overrightarrow{AD}|}$=$\frac{12}{\sqrt{13}•\sqrt{13}}$=$\frac{12}{13}$.
∴AD与面B1DC所成角的正弦值为$\frac{12}{13}$;
过D作DF∥AE,交B1C1于F,则梯形AEFD就是过A,D,E三点的截面,
∴AE=$\sqrt{16-4}=2\sqrt{3}$,DF=$\frac{1}{2}AE=\sqrt{3}$,
DF到AE的距离d=|$\overrightarrow{AD}$|•$\sqrt{1-(\frac{\overrightarrow{AD}•\overrightarrow{AE}}{|\overrightarrow{AD}|•|\overrightarrow{AE}|})^{2}}$=$\sqrt{13}$•$\sqrt{\frac{10}{13}}$=$\sqrt{10}$,
∴过A,D,E三点的截面面积是S梯形AEFD=$\frac{1}{2}$($\sqrt{3}+2\sqrt{3}$)×$\sqrt{10}$=$\frac{3}{2}\sqrt{30}$.
故答案为:$\frac{12}{13},\;\frac{3}{2}\sqrt{30}$.
点评 本题考查线面角的正弦值的求法,考查过三点的截面面积的求法,是中档题,注意向量法的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | 12 | B. | 24 | C. | 48 | D. | 96 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | [$\frac{4}{3}$,+∞) | B. | (1,$\frac{4}{3}$] | C. | [$\frac{5}{3}$,+∞) | D. | (1,$\frac{5}{3}$] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com