【题目】已知抛物线与直线相切于点,点与关于轴对称.
(1)求抛物线的方程及点的坐标;
(2)设是轴上两个不同的动点,且满足,直线、与抛物线的另一个交点分别为,试判断直线与直线的位置关系,并说明理由.如果相交,求出的交点的坐标.
【答案】(1),;(2)∥,详见解析.
【解析】
(1)联立方程组,整理得,根据,求得,得到抛物线的方程,进而得到点的坐标,从而求得点的坐标.
(2)设,直线的方程为,得出的方程为,
代入,求得,进而得到,代入抛物线的方程求得的坐标,利用斜率公式,即可得到结论.
(1)由题意,抛物线与直线相切于点,
联立方程组,消去,得,
所以,解得或,
又,解得,所以抛物线的方程为,
由,得,所以切点为,
因为点与关于轴对称,点的坐标.
(2)直线,理由如下:
依题意,直线的斜率不为,
设,直线的方程为,
由(1)知点,则,所以直线的方程为,
代入,解得(舍)或,所以,
因为,所以关于对称,得,
同理得的方程为,代入,
得,,
直线的斜率为,因此.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)sin(ωx+φ)﹣cos(ωx+φ)(0<φ<π,ω>0)为偶函数,且y=f(x)图象的两相邻对称轴间的距离为,则f()的值为( )
A.﹣1B.1C..D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列、中,,,且,,设数列、的前项和分别为和.
(1)若数列是等差数列,求和;
(2)若数列是公比为2的等比数列.
①求;
②是否存在实数,使对任意自然数都成立?若存在,求的值;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的左、右焦点分别是,,点是椭圆上除长轴端点外的任一点,连接,,设的内角平分线交的长轴于点.
(Ⅰ)求实数的取值范围;
(Ⅱ)求的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有甲,乙两种不透明充气包装的袋装零食,每袋零食甲随机附赠玩具,,中的一个,每袋零食乙从玩具,中随机附赠一个.记事件:一次性购买袋零食甲后集齐玩具,,;事件:一次性购买袋零食乙后集齐玩具,.
(1)求概率,及;
(2)已知,其中,为常数,求.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边的边长为3,点,分别是边,上的点,且,.如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②二面角大小为;③到平面的距离为.在中任选一个,补充在下面问题的条件中,并作答:
在线段上是否存在一点,使三棱锥的体积为,若存在,求出的值;若不存在,请说明理由.
注:如果多个条件分别解答,按第一个解答给分。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,三棱锥S一ABC中,△ABC与△SBC都是边长为1的正三角形,二面角A﹣BC﹣S的大小为,若S,A,B,C四点都在球O的表面上,则球O的表面积为( )
A.πB.πC.πD.3π
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,焦点在轴上的椭圆与焦点在轴上的椭圆都过点,中心都在坐标原点,且椭圆与的离心率均为.
(Ⅰ)求椭圆与椭圆的标准方程;
(Ⅱ)过点M的互相垂直的两直线分别与,交于点A,B(点A、B不同于点M),当的面积取最大值时,求两直线MA,MB斜率的比值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com