精英家教网 > 高中数学 > 题目详情

【题目】轮船A从某港口O要将一些物品送到正航行的轮船B上,在轮船A出发时,轮船B位于港口O北偏西30°且与O相距20海里的P处,并正以15海里/时的航速沿正东方向匀速行驶,假设轮船A沿直线方向以v海里/时的航速匀速行驶,经过t小时与轮船B相遇,

1)若使相遇时轮船A航距最短,则轮船A的航行速度的大小应为多少?

2)假设轮船B的航行速度为30海里/时,轮船A的最高航速只能达到30海里/时,则轮船A以多大速度及沿什么航行方向行驶才能在最短时间内与轮船B相遇,并说明理由.

【答案】(1) 海里/(2) 航向为北偏东30°,航速为30海里/时时,轮船A能在最短时间内与轮船B相遇,理由见解析

【解析】

1)设相遇时轮船A航行的距离为s海里,利用余弦定理可得,进而求得距离的最小值,从而得到此时的航行速度;

2)先画出示意图,再利用余弦定理整理可得速度与时间的关系,根据速度的范围解得时间的最值,则可判断示意图中三角形的性质,进而得到方向即可

1)设相遇时轮船A航行的距离为s海里,则

∴当时,,此时,

即轮船A海里/时的速度航行,相遇时轮船A航距最短

2)航向为北偏东30°,航速为30海里/时时,轮船A能在最短时间内与轮船B相遇,

设轮船A与轮船BQ处相遇,如图,

,即,

,,,解得,

时,,

时,t最小且为,

此时在△POQ,

∴航向为北偏东30°,航速为30海里/时时,轮船A能在最短时间内与轮船B相遇

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知 为椭圆 的左焦点,且椭圆.

(Ⅰ)求椭圆的方程;

(Ⅱ) 是否存在平行四边形 ,同时满足下列两个条件:

①点在直线上;②点 在椭圆上且直线 的斜率等于1.如果存在,求出点坐标;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商品要了解年广告费(单位:万元)对年利润(单位:万元)的影响,对近4年的年广告费和年利润数据作了初步整理,得到下面的表格:

广告费

2

3

4

5

年利润

26

39

49

54

(Ⅰ)用广告费作解释变量,年利润作预报变量,建立关于的回归直线方程;

(Ⅱ)根据(Ⅰ)的结果预报广告费用为6万元时的年利润.

附:对于一组数据,…,,其回归直线的斜率和截距的最小二乘估计分别为:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)当时,恒成立,求实数的取值范围;

(2)证明:当时,函数有最小值,设最小值为,求函数的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正六棱锥被过棱锥高的中点且平行于底的平面所截,得到正六棱台和较小的棱锥.

1)求大棱锥、小棱锥、棱台的侧面积之比;

2)若大棱锥的侧棱长为,小棱锥的底面边长为,求截得的棱台的侧面积与全面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若函数内有极值,求实数的取值范围;

(Ⅱ)在(Ⅰ)的条件下,对任意,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集为R,集合A={x|-3x4}B={x|1≤x≤10}

1)求ABARB);

2)已知集合C={x|2a-1≤xa+1},若CA=C,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的导函数,则过曲线上一点的切线方程为  

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图已知三棱锥P-ABC,D,E,F分别是棱PA,PB,PC的中点求证平面DEF∥平面ABC.

查看答案和解析>>

同步练习册答案