【题目】设,函数.
(Ⅰ)若函数在处的切线与直线平行,求的值;
(Ⅱ)若对于定义域内的任意,总存在使得,求的取值范围.
【答案】(1)(2)
【解析】试题分析:(1)先求导数,再根据导数几何意义得切线斜率为,解得的值;(2)先根据任意存在性含义转化不等式为对应函数最值关系: 在定义域内不存在最小值,再求导数,根据a正负讨论导函数符号变化规律,进而确定单调性以及最小值取法,最后根据最小值情况确定的取值范围.
试题解析:解:(Ⅰ)函数的导函数为
,
则函数在处的切线斜率为,
依题意有,
解得.
(Ⅱ)对于定义域内的任意,总存在使得,
即为在定义域内不存在最小值,
①当时, ,无最小值,符合题意;
②当时, 的导函数为,
可得在单调递增,在单调递增,在单调递减,
即有在取得极大值,
当时, ;当时, .
取即可,
当时, 在单调递减,
且, ,
故存在,使得,
同理当时,令使得,
则有当时, 成立;
③当时, 在单调递减,在单调递增,在单调递增,
即有在处取得极小值,
当时, ;当时,
所以,
当时,不存在使得成立,
综上可得, 的取值范围是.
科目:高中数学 来源: 题型:
【题目】已知椭圆与直线y=x-2相切,设椭圆的上顶点为M, 是椭圆的左右焦点,且⊿M为等腰直角三角形。(1)求椭圆的标准方程;(2)直线l过点N(0,-)交椭圆于A,B两点,直线MA、MB分别与椭圆的短轴为直径的圆交于S,T两点,求证:O、S、T三点共线。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数(其中),(其中为自然对数的底数).
(1)若曲线在处的切线与直线垂直,求的单调区间和极值;
(2)若对任意,总存在使得成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数 .
(1)若函数在上是增函数,求正数的取值范围;
(2)当时,设函数的图象与x轴的交点为,,曲线在,两点处的切线斜率分别为,,求证:+ .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了解人们对“延迟退休年龄政策”的态度,某部门从年龄在岁到岁的人群中随机调查了人,并得到如图所示的频率分布直方图,在这人中不支持“延迟退休年龄政策”的人数与年龄的统计结果如图所示:
年龄 | 不支持“延迟退休年龄政策”的人数 |
(1)由频率分布直方图,估计这人年龄的平均数;
(2)根据以上统计数据填写下面的列联表,据此表,能否在犯错误的概率不超过的前提下,认为以岁为分界点的不同人群对“延迟退休年龄政策”的态度存在差异?
45岁以下 | 45岁以上 | 总计 | |
不支持 | |||
支持 | |||
总计 |
附:
参考数据:
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知4名学生和2名教师站在一排照相,求:
(1)中间二个位置排教师,有多少种排法?
(2)首尾不排教师,有多少种排法?
(3)两名教师不站在两端,且必须相邻,有多少种排法?
(4)两名教师不能相邻的排法有多少种?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知,为常数,函数.
(1)当时,求关于的不等式的解集;
(2)当时,若函数在上存在零点,求实数的取值范围;
(3)对于给定的,且,,证明:关于的方程在区间内有一个实数根.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知正项数列的前项和为,数列满足.
(1)求数列的通项公式;
(2)数列满足,它的前项和为,
(ⅰ)求;
(ⅱ)若存在正整数,使不等式成立,求实数的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com