精英家教网 > 高中数学 > 题目详情
17.如图,在梯形ABCD中,若E,F分别为腰AB,DC的三等分点,且|$\overrightarrow{AD}$|=2,|$\overrightarrow{BC}$|=5,求|$\overrightarrow{EF}$|.

分析 如图所示,$\overrightarrow{EF}$=$\overrightarrow{EA}+\overrightarrow{AD}+\overrightarrow{DF}$,$\overrightarrow{EA}=\frac{1}{3}\overrightarrow{BA}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$.可得$\overrightarrow{EF}$=$\frac{1}{3}\overrightarrow{BA}$+$\overrightarrow{AD}$+$\frac{1}{3}\overrightarrow{DC}$=$\frac{1}{3}\overrightarrow{BC}$+$\frac{2}{3}\overrightarrow{AD}$,再利用数量积运算性质即可得出.

解答 解:如图所示,$\overrightarrow{EF}$=$\overrightarrow{EA}+\overrightarrow{AD}+\overrightarrow{DF}$,$\overrightarrow{EA}=\frac{1}{3}\overrightarrow{BA}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$.
∴$\overrightarrow{EF}$=$\frac{1}{3}\overrightarrow{BA}$+$\overrightarrow{AD}$+$\frac{1}{3}\overrightarrow{DC}$
=$\frac{1}{3}(\overrightarrow{BA}+\overrightarrow{AD}+\overrightarrow{DC})$+$\frac{2}{3}\overrightarrow{AD}$
=$\frac{1}{3}\overrightarrow{BC}$+$\frac{2}{3}\overrightarrow{AD}$,
∴${\overrightarrow{EF}}^{2}$=$\frac{1}{9}{\overrightarrow{BC}}^{2}+$$\frac{4}{9}\overrightarrow{BC}•\overrightarrow{AD}$+$\frac{4}{9}$${\overrightarrow{AD}}^{2}$
=$\frac{1}{9}×{5}^{2}$+$\frac{4}{9}×2×5$+$\frac{4}{9}×{2}^{2}$
=9.
∴$|\overrightarrow{EF}|$=3.

点评 本题考查了向量共线定理、向量的多边形法则、数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.已知命题“若a>b,则ac2>bc2”及它的逆命题、否命题、逆否命题,在这四个命题中假命题有2个.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知函数y=f(x)为奇函数,且当x>0时,f(x)=x2-2x+3,则f(-1)=-2,当x<0时,f(x)=-x2-2x-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在平面直角坐标系xOy中,F是抛物线C:x2=2py(p>0)的焦点,M是抛物线C上位于第一象限内的任意一点,过M,F,O三点的圆的圆心为Q,点Q到抛物线C的准线的距离为$\frac{3}{2}$.
(Ⅰ)求抛物线C的方程;
(Ⅱ)过点F的直线交轨迹C于A,B两点,交抛物线C的准线l于点M,已知$\overrightarrow{MA}={λ_1}\overrightarrow{AF}$,$\overrightarrow{MB}={λ_2}\overrightarrow{BF}$,求λ12的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知一个直三棱柱的侧棱长等于1,它的俯视图是一个斜边长为2的等腰直角三角形,正视图的面积为1,那么侧视图面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.如图,在四边形ABCD中,AD=4,AB=5,AD⊥CD,cos∠ADB=$\frac{9}{16}$,∠DCB=135°,则BC=$\frac{27\sqrt{2}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在等差数列{an}中,a12=33,a22=63,求d和a32

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.投掷两枚骰子,则点数之和是8的概率为(  )
A.$\frac{5}{36}$B.$\frac{1}{6}$C.$\frac{2}{15}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若关于x的方程f(x)=x有实数解x0,则称x0是函数f(x)的“不动点”:已知函数f(x)=x2+ax+1在(0,+∞)上没有不动点,则实数a取值范围是(-1,+∞).

查看答案和解析>>

同步练习册答案