精英家教网 > 高中数学 > 题目详情

【题目】某电视厂家准备在五一举行促销活动,现在根据近七年的广告费与销售量的数据确定此次广告费支出.广告费支出x(万元)和销售量y(万台)的数据如下:

(1)若用线性回归模型拟合y与x的关系,求出y关于x的线性回归方程(其中;参考方程:回归直线

(2)若用模型拟合y与x的关系,可得回归方程,经计算线性回归模型和该模型的分别约为0.75和0.88,请用说明选择哪个回归模型更好;

(3)已知利润z与x,y的关系为z=200y﹣x.根据(2)的结果回答:当广告费x=20时,销售量及利润的预报值是多少?(精确到0.01)参考数据:

【答案】(1);(2)见解析;(3)万元

【解析】

1)由题中数据和参考公式计算可得线性回归方程;

(2)根据的大小关系判断两种模型的模拟效果;

(3)在第(2)问基础上,根据已知条件进行计算可得答案.

解:(1)由题意有

∴y关于x的线性回归方程为

2R2越接近于1,模型的拟合效果越好,故选用

(3)广告费x=20时,销售量预报值(万台),

故利润的预报值(万元).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,且是函数的一个极值,求函数的最小值;

(Ⅱ)若,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《中华人民共和国道路交通安全法》第47条规定:机动车行经人行横道时,应当减速慢行;遇到行人正在通过人行横道,应当停车让行,俗称“礼让斑马线”.下表是某十字路口监控设备所抓拍的6个月内驾驶员不“礼让斑马线”行为的统计数据:

月份

1

2

3

4

5

6

不“礼让斑马线”驾驶员人数

120

105

100

85

90

80

(Ⅰ)请根据表中所给前5个月的数据,求不“礼让斑马线”的驾驶员人数与月份之间的回归直线方程

(Ⅱ)若该十字路口某月不“礼让斑马线”驾驶员人数的实际人数与预测人数之差小于5,则称该十字路口“礼让斑马线”情况达到“理想状态”.试根据(Ⅰ)中的回归直线方程,判断6月份该十字路口“礼让斑马线”情况是否达到“理想状态”?

(Ⅲ)若从表中3、4月份分别选取4人和2人,再从所选取的6人中任意抽取2人进行交规调查,求抽取的两人恰好来自同一月份的概率.

参考公式: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,点为椭圆上的动点,若的最大值和最小值分别为.

(I)求椭圆的方程

(Ⅱ)设不过原点的直线与椭圆 交于两点,若直线的斜率依次成等比数列,求面积的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】哈师大附中高三学年统计甲、乙两个班级一模数学分数(满分150分),每个班级20名同学,现有甲、乙两位同学的20次成绩如下列茎叶图所示:

(I)根据基叶图求甲、乙两位同学成绩的中位数,并将乙同学的成绩的频率分布直方图填充完整;

(Ⅱ)根据基叶图比较甲乙两位同学数学成绩的平均值及稳定程度(不要求计算出具体值,给出结论即可)

(Ⅲ)现从甲乙两位同学的不低于140分的成绩中任意选出2个成绩,设事件为“其中2 个成绩分别属于不同的同学”,求事件发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2017年春节期间,某服装超市举办了一次有奖促销活动,消费每超过600元(含600元),均可抽奖一次,抽奖方案有两种,顾客只能选择其中的一种.

方案一:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,一次性摸出3个球,其中奖规则为:若摸到3个红球,享受免单优惠;若摸出2个红球则打6折,若摸出1个红球,则打7折;若没摸出红球,则不打折.

方案二:从装有10个形状、大小完全相同的小球(其中红球3个,黑球7个)的抽奖盒中,有放回每次摸取1球,连摸3次,每摸到1次红球,立减200元.

(1)若两个顾客均分别消费了600元,且均选择抽奖方案一,试求两位顾客均享受免单优惠的概率;

(2)若某顾客消费恰好满1000元,试从概率的角度比较该顾客选择哪一种抽奖方案更合算?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,已知点,直线:为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线和曲线的交点为

(1)求直线和曲线的普通方程;

(2)求

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线.

(1)当时,求的单调区间;

(2)若对任意时,恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥PABCD中,ABCD是矩形,PA=ABEPB的中点.

1)若过CDE的平面交PA于点F,求证:FPA的中点;

2)若平面PAB⊥平面PBC,求证:BCPA

查看答案和解析>>

同步练习册答案