【题目】(1)已知圆过点,且与直线相切于点,求圆的方程;
(2)已知圆与轴相切,圆心在直线上,且圆被直线截得的弦长为,求圆的方程.
【答案】(1);
(2)或.
【解析】
(1)求出过点且垂直于直线的直线方程,并求出线段的垂直平分线方程,联立两直线方程可得出圆心坐标,求出圆心到点的距离作为圆的半径,由此可得出圆的标准方程;
(2)设圆心的坐标为,可知圆的半径为,求出圆心到直线的距离,利用弦长的一半、、圆的半径之间的关系并结合勾股定理求出的值,即可得出圆的标准方程.
(1)由题意知圆心必在过切点且垂直切线的直线上,
可求得此直线为,
直线的斜率为,线段的中点坐标为,则线段的垂直平分线方程为,即,
可知圆心必在线段的垂直平分线上,
联立,可求得圆心,则,
因此,圆的方程为;
(2)设圆心,半径,
圆心到直线的距离为,
由半弦长、弦心距、半径的关系得,,
当时,圆心,半径,此时圆为;
当时,圆心,半径,此时圆为.
因此,圆的方程为或.
科目:高中数学 来源: 题型:
【题目】如图,为测量坡高MN,选择A和另一个山坡的坡顶C为测量观测点.从A点测得M点的仰角∠MAN=60°,C点的仰角∠CAB=45°以及∠MAC=75°;从C点测得∠MCA=60°.已知坡高BC=50米,则坡高MN=______米.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】部分与整体以某种相似的方式呈现称为分形.谢尔宾斯基三角形是一种分形,由波兰数学家谢尔宾斯基1915年提出.具体操作是取一个实心三角形,沿三角形的三边中点连线,将它分成4个小三角形,去掉中间的那一个小三角形后,对其余3个小三角形重复上述过程逐次得到各个图形,如图.
现在上述图(3)中随机选取一个点,则此点取自阴影部分的概率为( )
A. B. C. D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中所有正确的序号是_________
①两直线的倾斜角相等,则斜率必相等;
②若动点到定点和定直线的距离相等,则动点的轨迹是抛物线;
③已知、是椭圆的两个焦点,过点的直线与椭圆交于、两点,则的周长为;
④曲线的参数方程为为参数,则它表示双曲线且渐近线方程为;
⑤已知正方形,则以、为焦点,且过、两点的椭圆的离心率为.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某水果种植基地引进一种新水果品种,经研究发现该水果每株的产量(单位:)和与它“相近”的株数具有线性相关关系(两株作物“相近”是指它们的直线距离不超过),并分别记录了相近株数为0,1,2,3,4时每株产量的相关数据如下:
0 | 1 | 2 | 3 | 4 | |
15 | 12 | 11 | 9 | 8 |
(1)求出该种水果每株的产量关于它“相近”株数的回归方程;
(2)该种植基地在如图所示的长方形地块的每个格点(横纵直线的交点)处都种了一株该种水果,其中每个小正方形的面积都为,现从所种的该水果中随机选取一株,试根据(1)中的回归方程,预测它的产量的平均数.
附:回归方程中斜率和截距的最小二乘法估计公式分别为:,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(1)已知P是矩形ABCD所在平面上的一点,则有.试证明该命题.
(2)将上述命题推广到P为空间上任一点的情形,写出这个推广后的命题并加以证明.
(3)将矩形ABCD进一步推广到长方体,并利用(2)得到的命题建立并证明一个新命题.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)=|x﹣a|+3x,其中a>0.
(1)当a=1时,求不等式f(x)>3x+2的解集;
(2)若不等式f(x)≤0的解集为{x|x≤﹣1},求a的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:的左、右顶点分别为A,B,离心率为,点P(1,)为椭圆上一点.
(1)求椭圆C的标准方程;
(2)如图,过点C(0,1)且斜率大于1的直线l与椭圆交于M,N两点,记直线AM的斜率为k1,直线BN的斜率为k2,若k1=2k2,求直线l斜率的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com