精英家教网 > 高中数学 > 题目详情
已知函数f(x) 定义在(-1,1)上,f(
1
2
)=1,满足f(x)-f(y)=f(
x-y
1-xy
),且数列x1=
1
2
,xn+1=
2xn
1+xn2

(Ⅰ)证明:f(x)在(-1,1)上为奇函数;
(Ⅱ)求f(xn)的表达式;
(Ⅲ)若a1=1,an+1=
12n
2n
f(xn)-an,(n∈N+).试求an
(Ⅰ)因为f(x)定义在(-1,1)上满足f(x)-f(y)=f(
x-y
1-xy
),
所以当x=y=0时,可得f(0)=0,当x=0时,f(0)-f(y)=f(-y),
即f(-y)=-f(y),所以f(-x)=-f(x),
即f(x)在(-1,1)上为奇函数.
(Ⅱ)因为f(xn-1)=f(
2xn
1+xn2
)=f(
xn-(-xn)
1-xn?(-xn)
)=f(xn)-f(-xn)=2f(xn)

所以
f(xn+1)
f(xn)
=2
,又f(x1)=f(
1
2
)=1

所以f(xn)}为等比数列,其通项公式为f(xn)=f(x1)•2n-1=2n-1.…..(6分)
(3)因为
a n
+an+1=6n,所以an+1+an+2=6(n+1),两式相减,得an+2-
a n
=6,
所以{a2n-1}与{a2n}均为公差为6 的等差数列,
所以易求得
a n
=
3n-2(n为奇数)
3n-1(n为偶数)
.….(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•湖南)已知函数f(x)=eax-x,其中a≠0.
(1)若对一切x∈R,f(x)≥1恒成立,求a的取值集合.
(2)在函数f(x)的图象上取定两点A(x1,f(x1)),B(x2,f(x2)(x1<x2),记直线AB的斜率为K,问:是否存在x0∈(x1,x2),使f′(x0)>k成立?若存在,求x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-x,其图象记为C,若对于任意非零实数x1,曲线C与其在点P1(x1,f(x1))处的切线交于另一点P2(x2,f(x2)),曲线C与其在点P2(x2,f(x2))处的切线交于另一点P3(x3,f(x3)),线段P1P2,P2P3与曲线C所围成封闭图形的面积分别记为S1,S2,求证:
S1S2
为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=1-|2x-a|,a∈R.
(I)当a=5时,求不等式f(x)≥3x-2的解集.
(II)求证:函数f(x)=1-|2x-a|的最大值恒为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a
(1)如果对任意x∈(1,2],f'(x)>a2恒成立,求实数a的取值范围;
(2)设实数f(x)的两个极值点分别为x1x2判断①x1+x2+a②x12+x22+a2③x13+x23+a3是否为定值?若是定值请求出;若不是定值,请把不是定值的表示为函数g(a)并求出g(a)的最小值;
(3)对于(2)中的g(a),设H(x)=
1
9
[g(x)-27],m,n∈(0,1)且m≠n,试比较|H(m)-H(n)|与|em-en|(e为自然对数的底)的大小,并证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3-ax+b存在极值点.
(1)求a的取值范围;
(2)过曲线y=f(x)外的点P(1,0)作曲线y=f(x)的切线,所作切线恰有两条,切点分别为A、B.
(ⅰ)证明:a=b;
(ⅱ)请问△PAB的面积是否为定值?若是,求此定值;若不是求出面积的取值范围.

查看答案和解析>>

同步练习册答案