解法一: ,
依题设知

,

.
(Ⅰ)连结

交

于点

,则

.
由三垂线定理知,

.······························································· 3分
在平面

内,连结

交

于点

,

由于

,
故

,

,

与

互余.
于是

.

与平面

内两条相交直线

都垂直,
所以


平面

.········································································· 6分
(Ⅱ)作

,垂足为

,连结

.由三垂线定理知

,
故

是二面角

的平面角.··············································· 8分

,

,

.

,

.
又

,

.

.

所以二面角

的大小为

.··············· 12分
解法二:
以

为坐标原点,射线

为

轴的正半轴,
建立如图所示直角坐标系

.
依题设,

.

,

.······························································· 3分
(Ⅰ)因为

,

,
故

,

.
又

,
所以

平面

.········································································· 6分
(Ⅱ)设向量

是平面

的法向量,则

,

.
故

,

.
令

,则

,

,

.·············································· 9分

等于二面角

的平面角,

.
所以二面角

的大小为

.