精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣ )﹣cos(A+ )=
(1)求角A的大小;
(2)若a= ,sin2B+cos2C=1,求△ABC的面积.

【答案】
(1)解:sin(A﹣ )﹣cos(A+ )=sin(A﹣ )﹣cos(2π﹣A- )=sin(A﹣ )﹣cos(A+

= sinA﹣ cosA﹣ cosA﹣ sinA=

即cosA=-

∵0<A<π,

∴A=


(2)解:由sin2B+cos2C=1,可得sin2B=2sin2C,

由正弦定理,得b2=2c2,即 .a=

cosA=- =

解得:c=1,b=

∴△ABC的面积S= bcsinA=


【解析】(1)利用诱导公式和两角和与差公式化简即可求解角A的大小.(2)利用二倍角公式化简sin2B+cos2C=1,可得sin2B=2sin2C,利用正余弦定理即可求解b,c的大小.即可求解△ABC的面积.
【考点精析】本题主要考查了正弦定理的定义和余弦定理的定义的相关知识点,需要掌握正弦定理:;余弦定理:;;才能正确解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x﹣ ﹣2lnx,a∈R.
(1)讨论函数f(x)的单调性;
(2)若函数f(x)有两个极值点x1 , x2 , 且x1<x2 , 求a的取值范围;
(3)在(2)的条件下,证明:f(x2)<x2﹣1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,点O为数轴的原点,ABM为数轴上三点,C为线段OM上的动点.设x表示点C与原点的距离,y表示点C到点A的距离的4倍与点C到点B的距离的6倍之和.

(1)将y表示为x的函数;

(2)要使y的值不超过70,实数x应该在什么范围内取值?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知双曲线和椭圆有公共的焦点,且离心率为

)求双曲线的方程.

)经过点作直线交双曲线 两点,且的中点,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.

甲产品所需工时

乙产品所需工时

A设备

2

3

B设备

4

1

若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为(
A.40万元
B.45万元
C.50万元
D.55万元

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若函数处的切线方程为,求的值;

(Ⅱ)讨论方程的解的个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]
在直角坐标系xOy中,双曲线E的参数方程为 (θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.
(1)求直线l的极坐标方程;
(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在正方形ABCD中,点E,F分别是AB,BC的中点,BD与EF交于点H,G为BD中点,点R在线段BH上,且 =λ(λ>0).现将△AED,△CFD,△DEF分别沿DE,DF,EF折起,使点A,C重合于点B(该点记为P),如图2所示.

(I)若λ=2,求证:GR⊥平面PEF;
(Ⅱ)是否存在正实数λ,使得直线FR与平面DEF所成角的正弦值为 ?若存在,求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,以为极点,轴的正半轴为极轴,建立极坐标系,曲线的极坐标方程为;直线的参数方程为(t为参数).直线与曲线分别交于两点.

(1)写出曲线的直角坐标方程和直线的普通方程;

(2)若点的极坐标为,求的值.

查看答案和解析>>

同步练习册答案