精英家教网 > 高中数学 > 题目详情

【题目】数学中的数形结合也可以组成世间万物的绚丽画面,一些优美的曲线是数学形象美、对称美、和谐美的产物,曲线为四叶玫瑰线,下列结论正确的有(

1)方程),表示的曲线在第二和第四象限;

2)曲线上任一点到坐标原点的距离都不超过2

3)曲线构成的四叶玫瑰线面积大于

4)曲线上有5个整点(横、纵坐标均为整数的点);

A.1)(2B.1)(2)(3

C.1)(2)(4D.1)(3)(4

【答案】A

【解析】

因为,所以异号,仅限与第二和四象限,从而判断1

利用基本不等式即可判断2

将以为圆心、2为半径的圆的面积与曲线围成区域的面积进行比较即可判断3

先确定曲线经过点,再将的整点逐一代入曲线的方程进行检验即可判断4

对于(1),因为,所以异号,仅限与第二和四象限,即1正确.

对于2,因为,所以

所以

所以,即2正确;

对于3,以为圆点,2为半径的圆的面积为,显然曲线围成的区域的面积小于圆的面积,即3错误;

对于4,只需要考虑曲线在第一象限内经过的整点即可,把代入曲线的方程验证可知,等号不成立,所以曲线在第一象限内不经过任何整点,再结合曲线的对称性可知,曲线只经过整点,即4错误;

故选:A.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知数列是等差数列,其前项和为,数列是公比大于0的等比数列,且 .

(Ⅰ)求数列的通项公式;

(Ⅱ)令,求数列的前项和为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若,求函数的极值;

(2)当时,,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是椭圆的左,右焦点,两点分别是椭圆的上,下顶点,是等腰直角三角形,延长交椭圆点,且的周长为.

1)求椭圆的方程;

2)设点是椭圆上异于的动点,直线与直分别相交于两点,点,求证:的外接圆恒过原点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】《九章算术》中记载:将底面为直角三角形的直三棱柱称为堑堵,将一堑堵沿其一顶点与相对的棱剖开,得到一个阳马(底面是长方形,且有一条侧棱与底面垂直的四棱锥)和一个鳖臑(四个面均为直角三角形的四面体).在如图所示的堑堵中,且有鳖臑C1-ABB1和鳖臑,现将鳖臑沿线BC1翻折,使点C与点B1重合,则鳖臑经翻折后,与鳖臑拼接成的几何体的外接球的表面积是______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知为实数,用表示不超过的最大整数,例如,对于函数,若存在,使得,则称函数是“函数”.

1)判断函数是否是“函数”;

2)设函数是定义在上的周期函数,其最小正周期是,若不是“函数”,求的最小值;

3)若函数是“函数”,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点为,离心率为,过点且垂直于轴的直线被椭圆截得的弦长为1.

1)求椭圆的方程;

2)若直线交椭圆于点两点,与线段和椭圆短轴分别交于两个不同点,且,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)若函数处有最大值,求的值;

2)当时,判断的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),直线过原点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.

1)求曲线和直线的极坐标方程;

2)若相交于不同的两点,求的取值范围.

查看答案和解析>>

同步练习册答案