精英家教网 > 高中数学 > 题目详情
互不相等的三个正数x1,x2,x3成等比数列,且点P1(logax1,logby1)P2(logax2,logby2),P3(logax3,logby3)共线(a>0且a≠0,b>且b≠1)则y1,y2,y3成(  )
A、等差数列,但不等比数列B、等比数列而非等差数列C、等比数列,也可能成等差数列D、既不是等比数列,又不是等差数列
分析:根据三点共线斜率相等,可求得
logb
y2
y1
loga
x2
x1
=
logb
y3
y2
loga
x3
x2
,根据x1,x2,x3成等比数列,进而可推断出
y2
y1
=
y3
y2
,当三者不相等时可推断出三者成等比数列,若三者相等也可能成等差数列.
解答:解:∵三点共线
logby2-logby1
logax2-logax1
=
logby3-logby2
logax3-logax2

logb
y2
y1
loga
x2
x1
=
logb
y3
y2
loga
x3
x2

∵x1,x2,x3成等比数列,
x2
x1
=
x3
x2

y2
y1
=
y3
y2

∴y1,y2,y3成等比数列,
若y1,y2,y3相等,
y1,y2,y3也成等差数列
∴y1,y2,y3可能成等比数列,也可能成差数列
故选C
点评:本题主要考查了等比关系的确定和对数函数的性质.考查了学生综合分析问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

互不相等的三个正数a、b、c成等差数列,又x是a、b的等比中项,y是b、c的等比中项,那么x2、b2、y2三个数(  )
A、成等差数列,非等比数列B、成等比数列,非等差数列C、既是等差数列,又是等比数列D、既不成等差数列,又不成等比数列

查看答案和解析>>

科目:高中数学 来源: 题型:

已知a,b,c为互不相等的三个正数,函数f(x)可能满足如下性质:
①f(x-a)为奇函数;②f(x+a)为奇函数;③f(x-b)为偶函数;④f(x+b)为偶函数.
类比函数y=sinx的对称中心、对称轴与周期的关系,某同学得出了如下结论:
(1)若满足①②,则f(x)的一个周期为4a;(2)若满足①③,则f(x)的一个周期为4|a-b|;(3)若满足③④,则f(x)的一个周期为3|a-b|.
其中正确结论的个数是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

互不相等的三个正数a,b,c成等差数列,又x是a、b的等比中项,y是b、c的等比中项,那么x2,b2,y2这三个数(  )

A.成等比数列而非等差数列

B.成等差数列而非等比数列

C.既成等比数列又成等差数列

D.既非等差数列又非等比数列

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a,b,c为互不相等的三个正数,函数f(x)可能满足如下性质:
①f(x-a)为奇函数;②f(x+a)为奇函数;③f(x-b)为偶函数;④f(x+b)为偶函数.
类比函数y=sinx的对称中心、对称轴与周期的关系,某同学得出了如下结论:
(1)若满足①②,则f(x)的一个周期为4a;(2)若满足①③,则f(x)的一个周期为4|a-b|;(3)若满足③④,则f(x)的一个周期为3|a-b|.
其中正确结论的个数是(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源:2012-2013学年北京市十一学校高三(上)暑期检测数学试卷3(文科)(解析版) 题型:选择题

已知a,b,c为互不相等的三个正数,函数f(x)可能满足如下性质:
①f(x-a)为奇函数;②f(x+a)为奇函数;③f(x-b)为偶函数;④f(x+b)为偶函数.
类比函数y=sinx的对称中心、对称轴与周期的关系,某同学得出了如下结论:
(1)若满足①②,则f(x)的一个周期为4a;(2)若满足①③,则f(x)的一个周期为4|a-b|;(3)若满足③④,则f(x)的一个周期为3|a-b|.
其中正确结论的个数是( )
A.0
B.1
C.2
D.3

查看答案和解析>>

同步练习册答案